
1. User Purpose and Range of Application

The NA8G series air circuit breaker ("circuit breaker" in short), with rated current from 200A to 6300A and rated operating voltage of 415V, 690V AC, is suitable for operation under 50Hz/60Hz AC and is mainly used in distribution network for power distribution, and to protect power line and power equipment from various faults such as overload, short circuit, undervoltage and single-phase ground. The circuit breaker is a combination of aesthetic appearance, high breaking capacity,zero flashover and multiple intelligent protection features. It can provide selective protection with accurate operations, to avoid unnecessary black out and guarantee reliable power supply.

The circuit breaker is widely applied in power plants, factories, mines and modern high rises, especially in power distribution system of intelligent buildings. It is also widely used in green projects such as wind power generation or solar power generation.

2. Type Key and Definitions

Notes: 1. Manual operation: not containing any motor operation mechanism, closing electromagnet and shunt release. Motor operation: including all standard accessories for remote operation.

2. Code example: NA8G-1600-1600M/3 MO D AC230V: frame size 1600, rated current 1600A, M type intelligent controller, 3 poles, motor operation, withdrawable type, control voltage AC230V.

3. Conditions for Normal Use, Installation, Transportation and Storage

3.1 Ambient air temperature from -5°C~+40°C, with average temperature within 24h not exceeding +35°C.

Note: user shall consult with manufacturer for applications under temperature over +40°C or below -5°C.

3.2 The product shall not be installed at an altitude higher than 2000m.

3.3 Relative humidity shall not exceed 50% when ambient air temperature is at +40°C; higher relative humidity is allowed under lower temperature; if the average minimum relative humidity is 90% in wettest month, and the average minimum temperature in that month is +25°C, condensation due to temperature changes shall be taken into consideration.

3.4 The pollution grade is 3.

3.5 The installation category of the main circuit of the circuit breaker is IV. When the rated operating voltage of the main circuit is less than or equal to AC400V, the auxiliary circuit installation category is the same as that of the circuit breaker except that the primary coil of the power transformer of the undervoltage release and the intelligent controller are the same as the circuit breaker. III; when the rated working voltage of the main circuit is greater than AC400V and less than or equal to AC690V, the control circuit and auxiliary circuit need to be isolated from the main circuit by an isolation transformer with a capacity of $\ge 2kA$, and the maximum working voltage of the control circuit and auxiliary circuit is AC400V. The installation categories of auxiliary circuits are all III.

3.6 Circuit breaker should be installed in set or separately indoor according to this instruction, with vertical inclination not bigger than 5°.

3.7 Protection level: IP20 on the front and IP00 on the other.

4. Key Technical Parameters and Performance

Table 1 Key technical parameters

Frame size		NA8G-1600	NA8G-2500	NA8G-3200	NA8G-4000	NA8G-6300	
Rated current In (A	(A	200,400,630,800, 1000,1250,1600	630,800,1000,1250, 1600,2000,2500	1600,2000,2500, 2900,3200	1600,2000,2500, 2900,3200,4000	4000,5000 6300	
Rated current of N	I-pole In (A)	100%ln	100%ln	100%ln	100%ln	50%ln /	
Number of poles		3P,4P	3P,4P	3P,4P	3P,4P	3P,4P 3P	
Utilization catego	ry	В	В	В	В	В	
Rated insulation v	oltage Ui (V)	690	1000	1000	1000	1000	
Rated impulse with Uimp (kV)	nstand voltage	8	12	12	12	12	
Rated frequency (I	Hz)	50/60	50	50/60	50/60	50/60	
Rated operational	voltage Ue (V)	415 690	415 690	415 690	415 690	415	
Rated ultimate sho capacity Icu (kA rr	5	50 25	80 50	100 65	100 65	120	
Rated service shor capacity Ics (kA r	5	40 20	55 40	80 65	100 65	100	
Rated short-time Icw 1s (kA rms)		40 20	55 40	80 65	85 65	100	
Rated short-circui Icm (kA peak) VA		105 52.5	176 105	220 143	220 143	264	
Breaking time (ms)	20~30	20~30	20 ~ 35	20~35	20 ~ 35	
Closing time (ms)		30~40	30~40	30~40	30~40	30~45	
Frequency of oper	ation (times/hour)	20	20	10	10	10	
	Mechanical life	15000	10000	10000	10000	5000	
LifeC/Ocycle	Electrical (AC400V)	5000	5000	4000	5000	1000	
	life (AC690V)	3000	3000	2000	3000	500	
Flashover distance	(mm)	0	0	0	0		
Wire incoming pat	tern	For upper or lower port	For upper or lower port	For upper or lower port	For upper or lower port	For upper or lower port	
Weight(2D/4D)	Fixed (kg)	22/26.5	46/55	52.5/66.5	52.5/66.5	-	
Weight(3P/4P)	Withdrawerable(kg)	42.5/55	80/91.5	98/121	98/121	210/233	
Dimension(3P/4P)	Fixed	320×(254/324)×248	400×(370/465)×290	402×(430/545)×290	402×(430/545)×290	-	
H×W×D	Withdrawerable	351×(282/352)×297	431×(375/470)×391	431×(435/550)×391	431×(435/550)×391	431×(813/930)×391	

Notes: It is only withdrawerable type for NA8G-6300 and no fixed type ; it is only 3P type for NA8G-6300(In=6300A) and no 4P type.

5. Structural Features

5.1 NA8G-1600 withdrawable circuit breaker structure

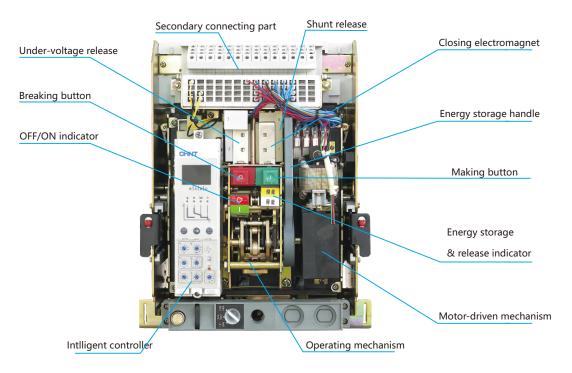


Figure 5.1-1 NA8G-1600 withdrawerable circuit breaker structure

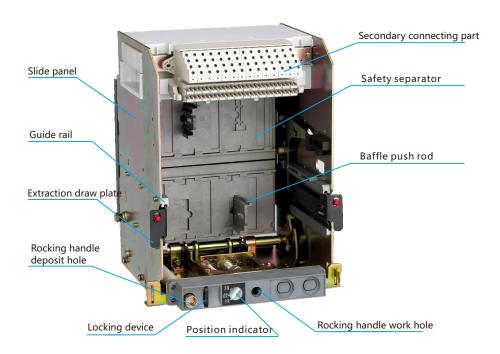


Figure 5.1-1 NA8G-1600 withdrawer structure

5.2 NA8G-3200 withdrawable circuit breaker structure

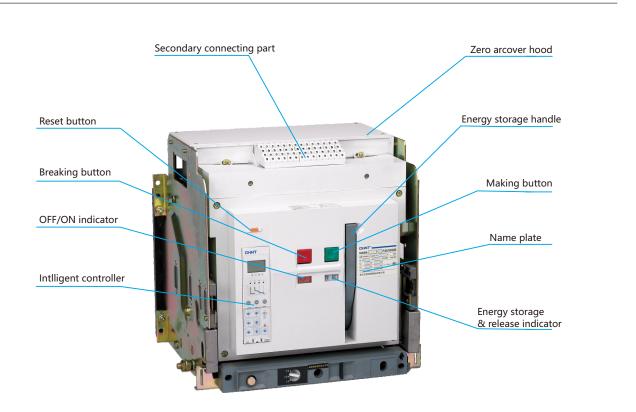
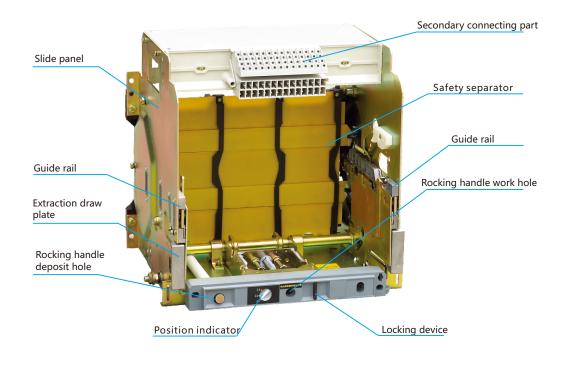
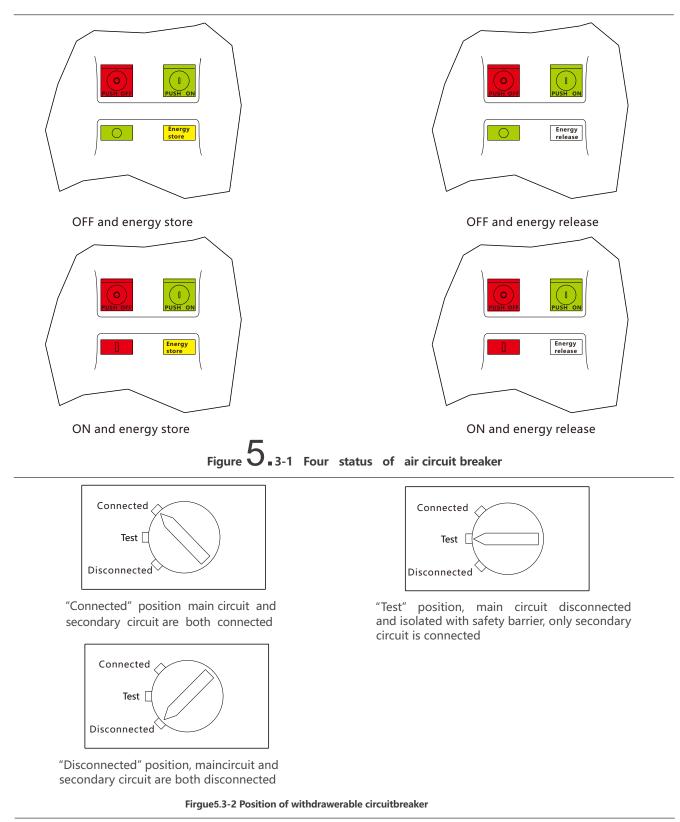




Figure 5.2-1 NA8G-3200 withdrawerable circuit breaker structure

5.3 The states of air circuit breaker

6. Installation Requirements

6.1 Pre-installation check

6.1.1 Check with your order to see whether it is consistent with the parameters on the nameplate of the circuit breaker,

check for the following items:

a. Circuit breaker type, rated current, rated operating voltage;

b. Installation method, operating method;

c. Intelligent controller voltage, shunt release voltage, closing electromagnet voltage, energy storage motor voltage, undervoltage release voltage and delay time;

d. Other special ordering requirements;

6.1.2 Check the packing contents according to the configuration described in this manual;

6.1.3 Before installing, operating, maintaining and repairing the product, read this manual carefully to avoid artificial damage to the circuit breaker and cause unnecessary problems.

6.2 Preparation before installation

6.2.1 Unpack according to the order described on the bottom of the package, do not use brutal force;

6.2.2 Remove the circuit breaker from the base plate of the package. If the circuit breaker is of withdrawable type, you can find fixing bolts inside the drawer seat, rotate the body out and clean up the drawer seat;

6.2.3 Use 500V megameter to test the insulation resistance of the circuit breaker. It shall not be lower than 20 megohm under ambient temperature of $25^{\circ}C\pm 5^{\circ}C$ and relative humidity of 50-70%. Position for testing insulation resistance: between phases and between phase and frame when the circuit breaker is closed; between inlet and outlet cable of each phase when the circuit breaker is open.

6.3 Recommended busbar, power consumption and derated application of circuit breaker

6.3.1 Recommendation busbar

Maximum allowable temperature of busbar: 100°C.Busbar is made of bare copper, with width and thickness in mm.

Frame	Rated	Ambien	t temper	ature (-5 ~	√40) °C	Amb	pient temp	perature 5	50℃		Ambient	temperat	ure 60 ℃
size	current	Recomme	ended busk	oar specifica	tions	Recommended busbar specifications				Recom	nmended b	ousbar spe	ecifications
current	(A)	Width	Thickness	Pieces	Specification	Width	Thickness	Pieces	Specification	Width	Thickness	Pieces	Specification
	200	30	5	1	30*5*1	30	5	1	30*5*1	40	5	1	40*5*1
	400	30	5	2	30*5*2	30	5	2	30*5*2	30	10	1	30*10*1
	630	40	5	2	40*5*2	40	5	2	40*5*2	50	5	2	50*5*2
1600A	800	50	5	2	50*5*2	50	5	2	50*5*2	50	6	2	50*6*2
	1000	50	5	3	50*5*3	50	5	3	50*5*3	50	6	3	50*6*3
	1250	60	8	2	60*8*2	60	8	2	60*8*2	60	10	2	60*10*2
	1600	60	10	2	60*10*2	60	10	2	60*10*2	60	10	3	60*10*3
	630	40	5	2	40*5*2	50	5	2	50*5*2	50	5	2	50*5*2
	800	50	5	2	50*5*2	50	5	2	50*5*2	60	5	2	60*5*2
	1000	50	5	3	50*5*3	50	5	3	50*5*3	60	5	3	60*5*3
2500A	1250	60	8	2	60*8*2	60	8	2	60*8*2	60	8	3	60*8*3
	1600	60	10	2	60*10*2	60	10	2	60*10*2	60	10	3	60*10*3
	2000	100	5	3	100*5*3	100	5	3	100*5*3	100	5	4	100*5*4
	2500	100	10	2	100*10*2	100	10	2	100*10*2	80	10	3	80*10*3
	1600	100	6	2	100*6*2	100	6	2	100*6*2	100	8	2	100*8*2
	2000	100	6	3	100*6*3	100	6	3	100*6*3	100	10	2	100*10*2
3200A	2500	100	10	2	100*10*2	100	10	2	100*10*2	100	10	2	100*10*2
	2900	100	10	3	100*10*3	100	10	3	100*10*3	100	10	4	100*10*4
	3200	100	10	4	100*10*4	100	10	4	100*10*4	100	10	5	100*10*5
	1600	80	8	2	80*8*2	80	8	2	80*8*2	80	10	3	80*10*3
	2000	80	8	3	80*8*3	80	8	3	80*8*3	80	10	3	80*10*3
4000A	2500	80	6	4	80*6*4	80	6	4	80*6*4	80	8	4	80*8*4
4000A	2900	80	6	4	80*6*4	80	6	4	80*6*4	80	8	4	80*8*4
	3200	100	10	4	100*10*4	100	10	4	100*10*4	100	10	4	100*10*4
	4000	100	10	5	100*10*5	100	10	5	100*10*5	120	10	5	120*10*5
	4000	100	10	5	100*10*5	100	10	5	100*10*5	100	10	6	100*10*5
6300A	5000	100	10	7	100*10*7	100	10	7	100*10*7	120	10	7	120*10*7
	6300	120	10	7	120*10*7	120	10	7	120*10*7	120	10	8	120*10*8

Table 2 Recommended busbar for circuit breaker

Notes: a. If the busbar selected by user does not match with the terminals of circuit breaker, an extended busbar is needed for adaption. The extended busbar should be provided by user itself, with cross section area not smaller than the requirement in the table above. The clearance of extended busbar should not be smaller than that of circuit breaker terminals.

b. After installing the busbar according to the table above, make sure the electric clearance between each phase is not less than 18mm.

c. If silicon controlled electrical elements (such as high frequency induction heating furnace (medium frequency furnace for steelmaking), solid state high frequency welder (such as submerged arc welder), vacuum heating melting equipment (such as single crystal silicon growth furnace)) are used for three-phase rectification and high-frequency inversion in loading equipment, impact from ambient temperature and altitude as well as higher harmonic generated by silicon controlled electrical elements should all be considered when selecting circuit breaker. In such cases, the circuit breaker must be derated, the recommend derating factor is 0.5-0.8.

d. After the busbar is installed, the electrical clearance between the upper and lower fixing bolts of the busbar should not be smaller than 20mm.

e. After the circuit breaker is installed, the safety clearance between live parts of different electrical potentials and the safety clearance between live parts and earth should not be smaller than 18mm.

6.3.2 Power consumption

Power consumption is measured under In, 50/60Hz for each pole.

Power consumption of Power consumption of **Rated current (A)** Frame size withdrawable type (W) fixed type (W) 1600A 58.6 26.4 73.7 36.6 2500A 3200A 4000A _ 6300A _

Table 3 Power consumption of circuit breaker

6.3.3 Circuit breaker derating

a) Circuit breaker derating under different temperature

Ambient temperature	200	Α	400	A	630	Α	800	Α	100	A00	12	50A	16	00A
Connection method	Horizontal	Vertical	Horizontal	Vertical										
40°	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	-	-	1550	-
50°	-	-	-	-	-	-	-	-	-	-	-	-	15 0 0	1550
55°	-	-	-	-	-	-	-	-	950	950	1150	1200	1450	15 0 0
60°	-	-	-	-	550	580	700	700	900	900	1050	1100	1 3 50	1 4 50

Table 4 Temperature derating table for NA8G-1600

Table 5 Temperature derating table for NA8G-2500

Ambient temperature	63)A	80	0A	100	0A	1250)A	160	0A	20	00A	250	00A
Connection method	Horizontal	Vertical												
40°	-	-	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	1900	-	2400	2400
50°	-	-	-	-	-	-	-	-	1500	1550	1850	1900	2300	2300
55°	-	-	-	-	-	-	-	-	1400	1450	1800	1800	2200	2200
60°	-	-	-	-	-	-	-	-	1300	1350	1700	1700	2100	2100

Table 6 Temperature derating table for NA8G-3200

Ambient temperature	160	A00	200	2000A		2500A		00A	3200A	
Connection method	Horizontal	Vertical								
40°	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-
50°	-	-	-	-	-	-	-	-	3100	-
55°	-	-	-	-	2450	-	2800	-	3000	3050
60°	-	-	-	-	2350	2400	2700	2800	2900	2900

Table 7 Temperature derating table for NA8G-4000

Ambient temperature	160	A00	20	00A	25	00A	29	A00	320	A00	400	0A
Connection method	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	-	-	-	-	-	-	-	-	-	-	-
45°	-	-	-	-	-	-	-	-	-	-	3800	3850
50°	-	-	-	-	-	-	-	-	3100	-	3600	3650
55°	-	-	-	-	2450	-	2800	-	3000	3050	3400	3450
60°	-	-	1900	1950	2350	2400	2700	2800	2900	2950	3200	3250

Table 8 Temperature derating table for NA8G-6300

Ambient temperature	4000A		500	A00	630	00A
Connection method	Horizontal	Vertical	Horizontal	Vertical	Horizontal	Vertical
40°	-	/	-	/	-	/
45°	-	/	-	/	6100	/
50°	-	/	4700	/	6000	/
55°	3900	/	4600	/	5500	/
60°	3800	/	4400	/	5200	/

Note: "-" means no derating; "/" means no vertical connection.

b) Circuit breaker derating under different altitudes

Table 9 Voltage correction table under different altitudes

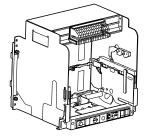
Altitude (Altitude (m)		3000	4000	5000
Rate impulse withstand voltage (kV)	Uimp	12	10	8.5	7.5
Insulation class (V)	Ui	1000	800	700	600
Power frequency withstand voltage (V)		2200	1955	1760	1600
Maximum operating voltage (V)	Ue	690	580	500	400

Table 10 Current correction table under different altitudes

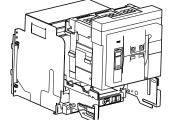
Altitude (m)	Rated operating current (le)
2000	1.0le
2500	0.93le
3000	0.88le
3500	0.83le
4000	0.78le
4500	0.73le
5000	Must confirm with manufacturer

Note: If ambient temperature is lower than 40°C, le=ln; if ambient temperature is higher than 40°C, le≠ln, le and ln should be referred to according to temperature derating table.

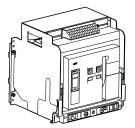
6.4 Circuit breaker installation

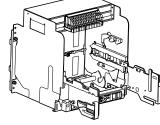

a. Fixed type circuit breaker installation Place the circuit breaker in the cabinet, use 4 M6 (Inm=1600A) or M10 (Inm=2500A and above) bolts and washers to fix the circuit breaker.

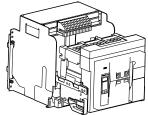
The circuit breaker should be secured properly, without additional mechanical force, to avoid damage of circuit breaker or poor contact of main bus.


b. Withdrawable type circuit breaker installation

Draw the circuit breaker body out of the drawer seat, install the drawer seat in the cabinet, use 4 M6 (Inm=1600A) or M10 (Inm=2500A and above) bolts and washers to fix the circuit breaker.


The circuit breaker should be secured properly, without additional mechanical force, to avoid damage of circuit breaker or poor contact of main bus and secondary circuit. Then, install the body back into the drawer seat.

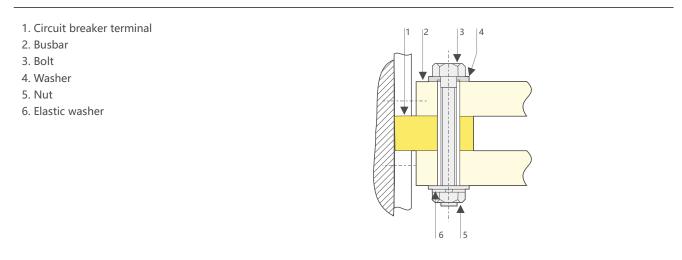

(1)Withdrawer socket placed horizontally


(3)Place the breaker body on the guide rail

(5)Push the breaker body in, and turn it into the connected position

(2)Pull out the guide rail

(4) Move the breaker body onto the guide rail with a snap


Figure 6.4-1 Diagram of operation for the withdawerable circuit breaker

6.5 Interval

Leave sufficient space for ventilation in the cabinet, the spacer for upper and lower connectors of circuit breaker must be made of nonmagnetic material.

6.6 Busbar fixation

The busbar must be fixed with proper torque by using bolts and nuts, too big or too small torque is not allowed. Too big torque may cause bolts to slip which makes it difficult to tighten the bolts; too small torque may cause misalignment of bolts and nuts which leads to poor fastening and may cause excessive temperature rise. For circuit breaker connections, the data of torque tightening is applicable to copper busbar and steel bolts and nuts, with grade≥8.8, it is also applicable aluminum busbar.

Figure 6.6-1 Diagram of busbar fixing

Recommended installation method

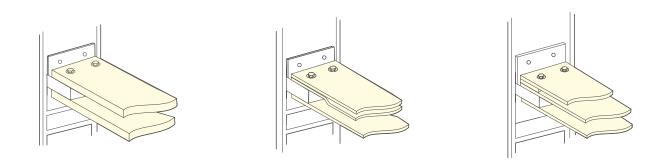


Figure 6.6-2 Recommended installation diagram of busbar

Table 11 Tightening torque for circuit breaker

Bolt type	Application	Preferred tightening torque
M3	Secure secondary connection cable	(0.5~0.7) N·m
M8 (only with flat washer)	Secure the product to cabinet (1600A frame size)	(18~25) N·m
M10 (only with flat washer)	Secure the product to cabinet (2500A frame size and above)	(25~40) N·m
M10	Secure busbar	(36~52) N·m
M12	Secure busbar	(61~94) N·m

7. Outline and Installation Dimensions

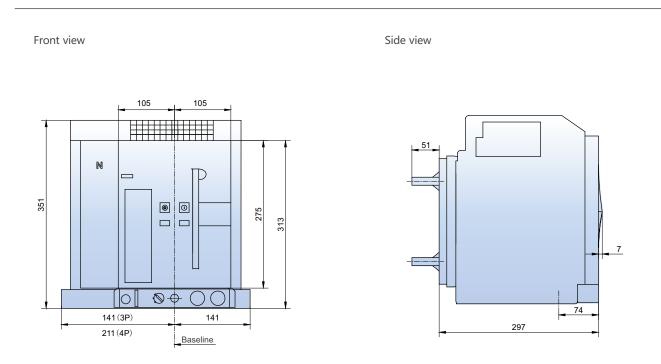
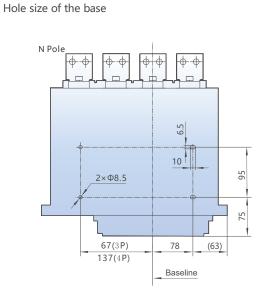
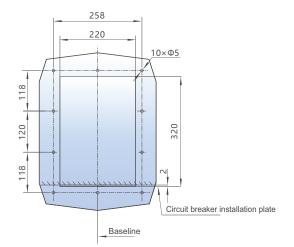
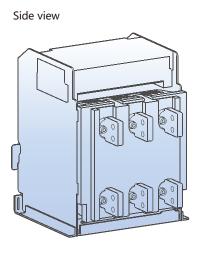




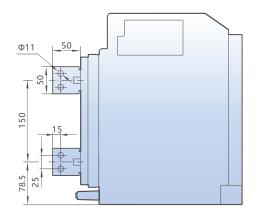
Figure 7.1 Overall dimension of NA8G-1600 withdrawable type

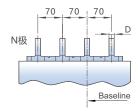
Hole size of the panel

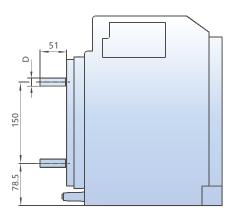


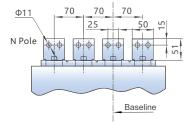
Side view

In(A)	D(mm)
200~800	10
1000~1600	16

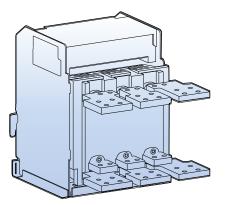

Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.




In(A)	D(mm)
200~800	10
1000~1600	16


Busbar installation dimensions

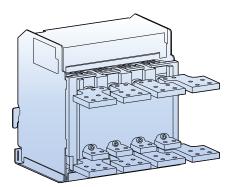
Busbar installation dimensions



Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.

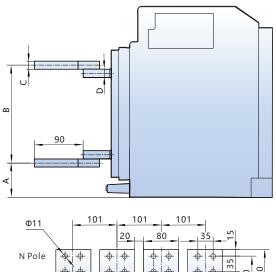
(P-013) Air Circuit Breaker | NA8G

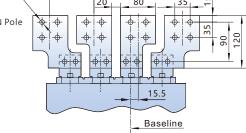
Side view



			Ur	nit:mm
In(A)	Α	В	С	D
200~800	68.5	169	10	10
1000~1600	63	179	15	16

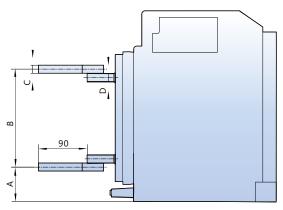
Note: The extended busbar is an optional accessory, which wil be charged separately.

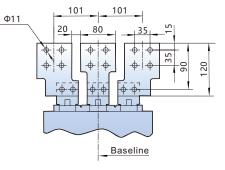


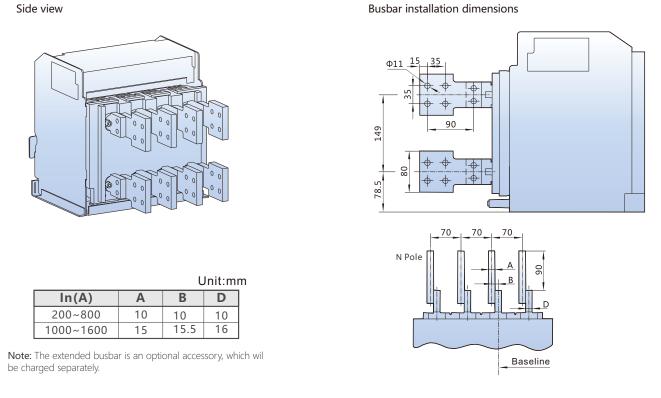

Side view

			Uni	t:mm
In(A)	Α	В	С	D
200~800	68.5	169	10	10
1000~1600	63	179	15	16

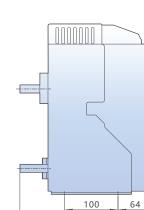
Busbar installation dimensions



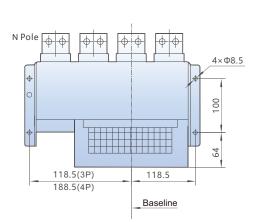


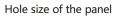

Note: The extended busbar is an optional accessory, which wil be charged separately.

Busbar installation dimensions



(P-015) Air Circuit Breaker | NA8G


Front view



250

Side view

Figure 7.2 Overall dimension of NA8G-1600 fixed type

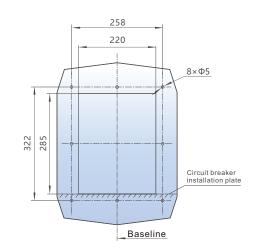
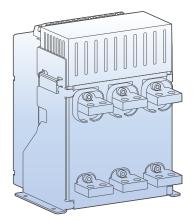
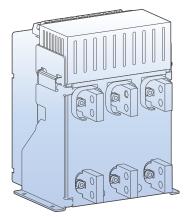



Figure 7.2-1 Perforating size of NAG8-1600 fixed type

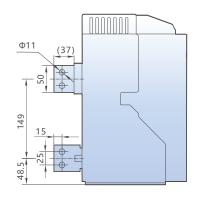
Hole size of the base

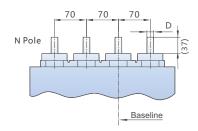
Side view



In(A)	D(mm)
200~800	10
1000~1600	16

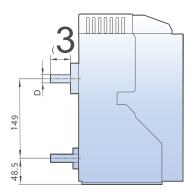
Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.

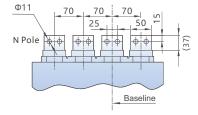



Side view

In(A)	D(mm)
200~800	10
1000~1600	16

Busbar installation dimensions





Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.

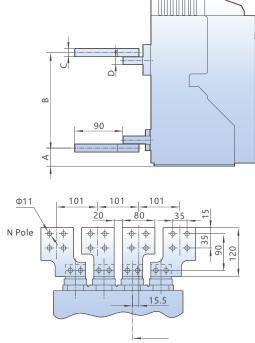
Busbar installation dimensions

Side view

Side view

Unit:mm

In(A)	Α	В	С	D
200~800	38.5	169	10	10
1000~1600	33	179	15	16


Note: The extended busbar is an optional accessory, which will be charged separately.

101 Φ11 20 N Pole Unit:mm In(A) Α В D С 200~800 38.5 10 169 10 1000~1600 33 179 15 16

Note: The extended busbar is an optional accessory, which wil be charged separately.

Busbar installation dimensions

Busbar installation dimensions

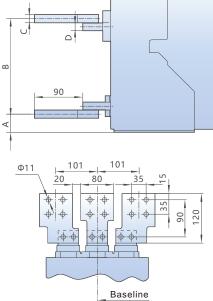
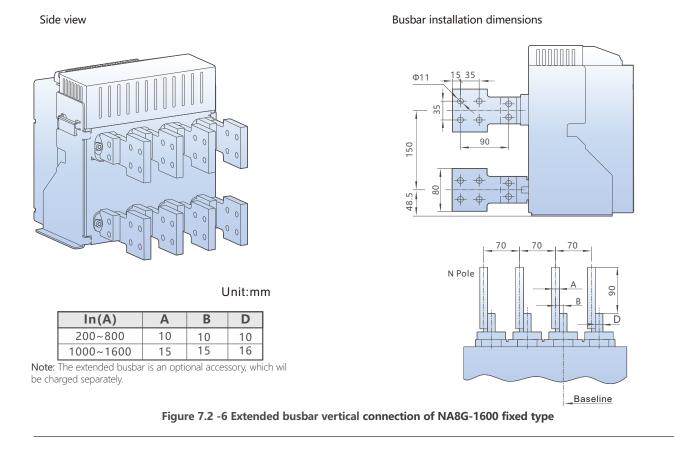
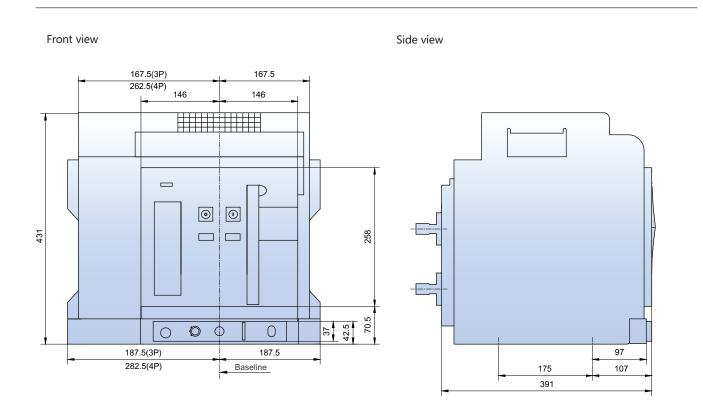
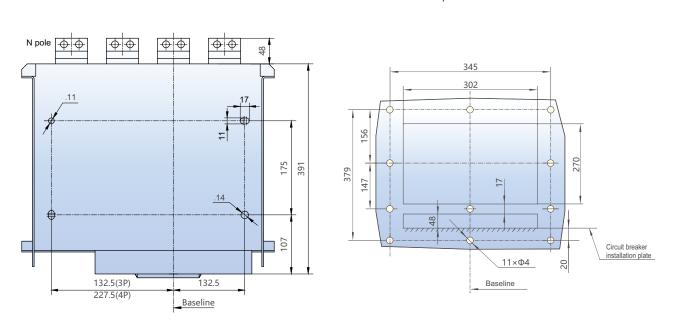
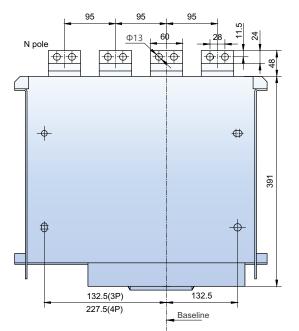
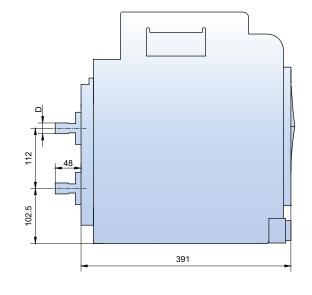



Figure 7.2-5 Extended busbar horizontal connection of NA8G-1600-4P fixed type

(P-019) Air Circuit Breaker | NA8G


Figure 7.3 Overall dimension of NA8G-2500 withdrawable type



Hole size of the base

Hole size of the panel

In(A)	D(mm)
630	10
800~1600	15
2000~2500	20

Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.

Figure 7.3-2 Horizontal busbar connection of NA8G-2500 withdrawable type

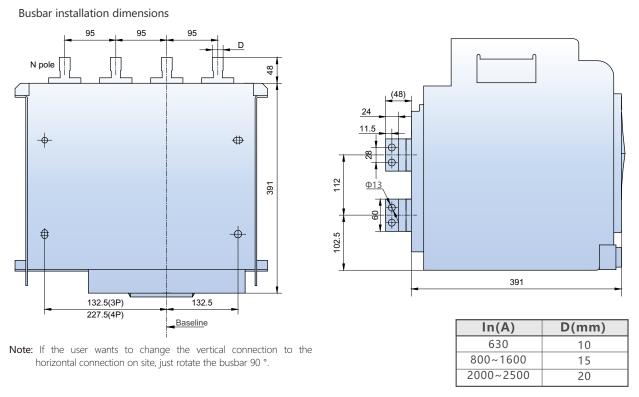
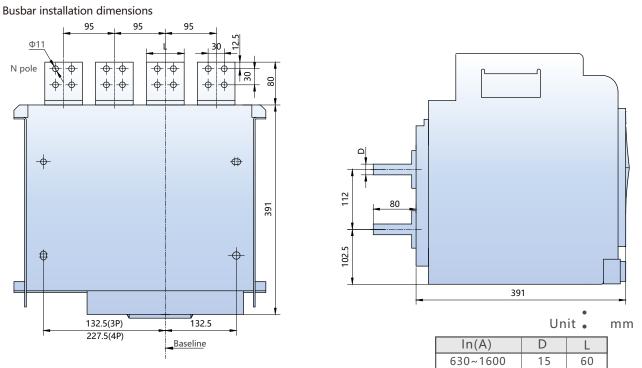



Figure 7.3-3 Vertical busbar connection of NA8G-2500 withdrawable type

Busbar installation dimensions (factory default configuration)

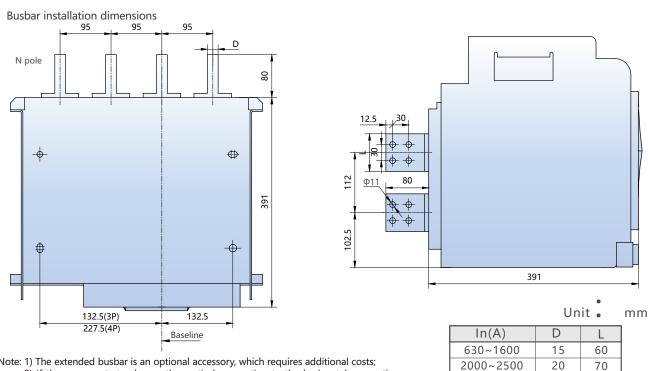
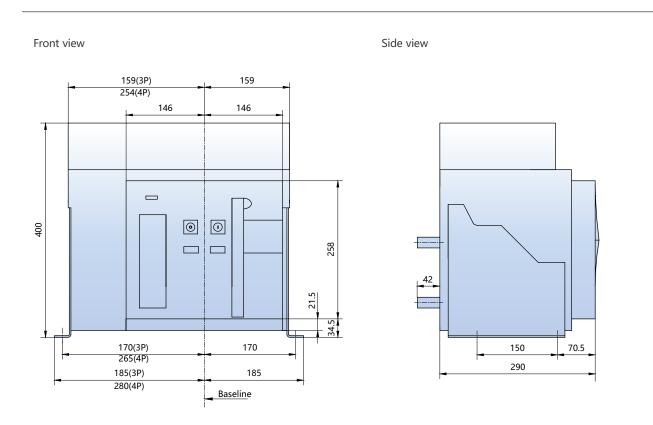

Note: 1) The extended busbar is an optional accessory, which requires additional costs;2) If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.

Figure 7.3-4 Horizontal extended busbar connection of NA8G-2500 withdrawable type

2000~2500


20

70

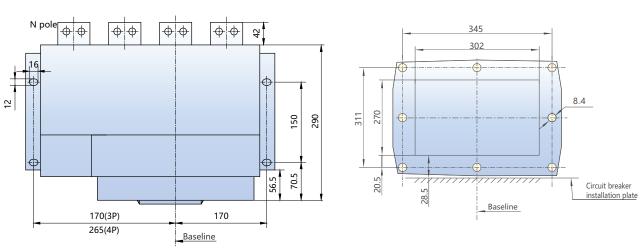
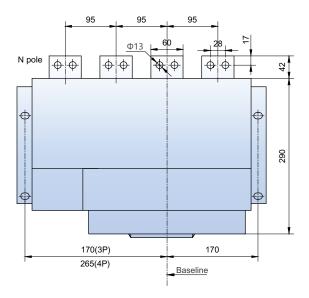
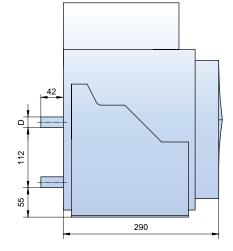

Note: 1) The extended busbar is an optional accessory, which requires additional costs; 2) If the user wants to change the vertical connection to the horizontal connection on site, just rotate the busbar 90 °.

Figure 7.3-5 Vertical extended busbar connection of NA8G-2500 withdrawable type

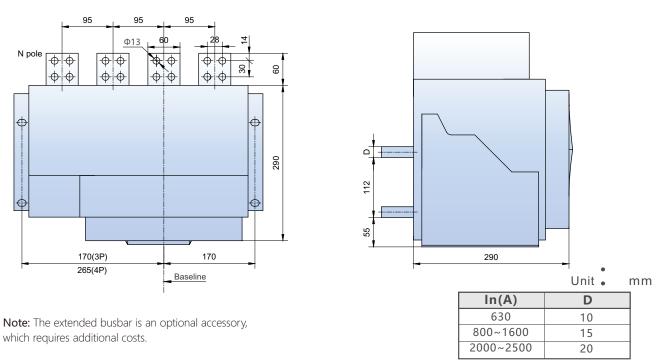

Figure 7.4 Overall dimension of NA8G-2500 fixed type

Hole size of the base



Hole size of the panel

Figure 7.4-1 Perforating size of NA8G-2500 fixed type



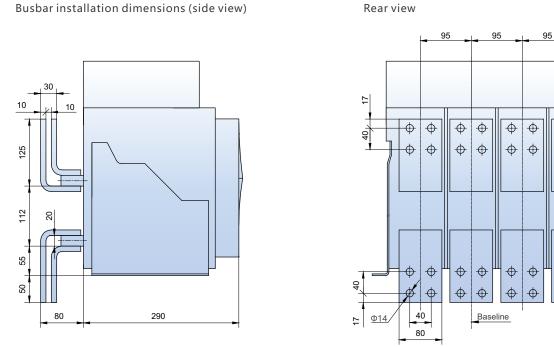
Busbar installation dimensions (factory default configuration)

Unit • mm In(A) D 630 10 800~1600 15 2000~2500 20

Figure 7.4-2 Horizontal busbar connection of NA8G-2500 fixed type

Busbar installation dimensions

 \oplus Φ

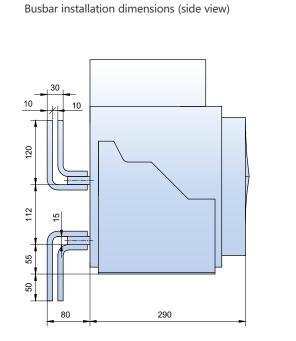

φ φ

 \oplus Φ

Φ \oplus 342

50

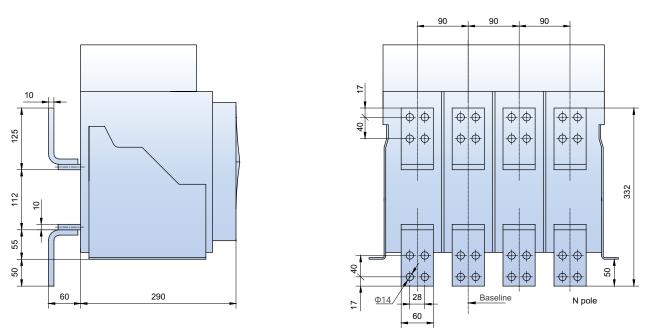
N pole



Busbar installation dimensions (side view)

Note: The vertical connection busbar is an optional accessory, which requires an additional cost; the vertical connection requires an additional phase spacer.

Rear view


95 95 95 17 $\Phi | \Phi$ $\Phi | \Phi$ $\Phi | \Phi$ $\Phi | \Phi$ 6 $\Phi | \Phi$ $\Phi | \Phi$ $|\phi|$ $\Phi | \Phi$ 337 $\Phi | \Phi$ $\Phi | \Phi$ $\Phi | \Phi$ $\Phi | \Phi$ 4 50 Φ $\Phi \Phi$ $\Phi | \Phi$ $\Phi | \Phi$ ø 28 Baseline Φ14 N pole 17 60

Note: The vertical connection busbar is an optional accessory, which requires an additional cost.

Rear view

Note: The vertical connection busbar is an optional accessory, which requires an additional cost.

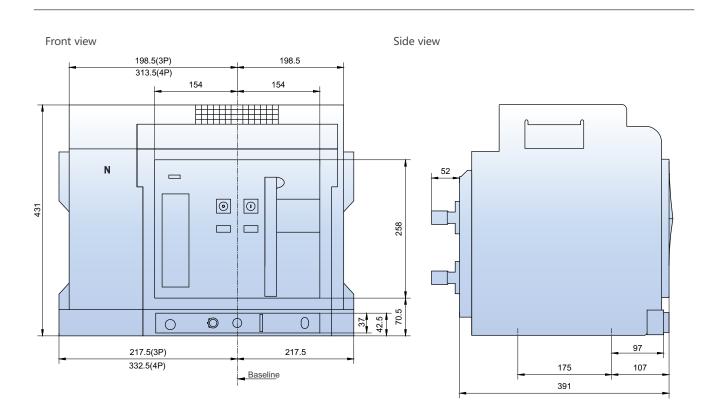
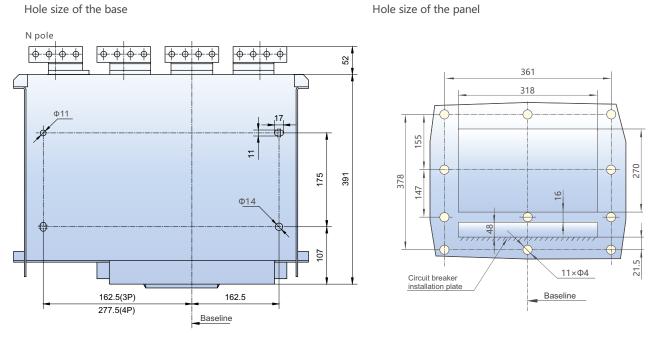
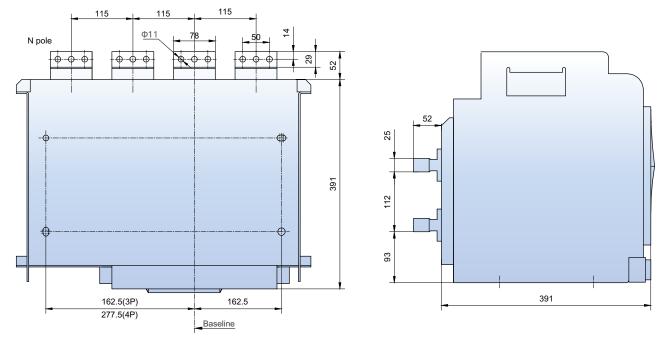
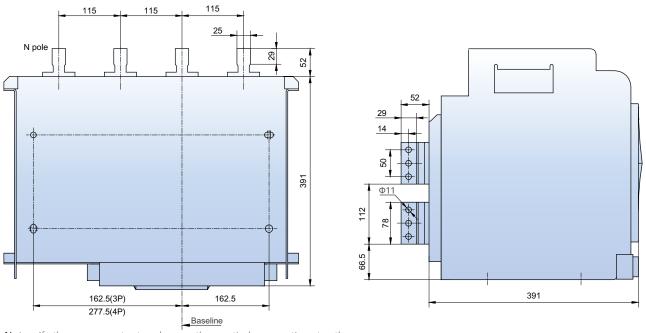




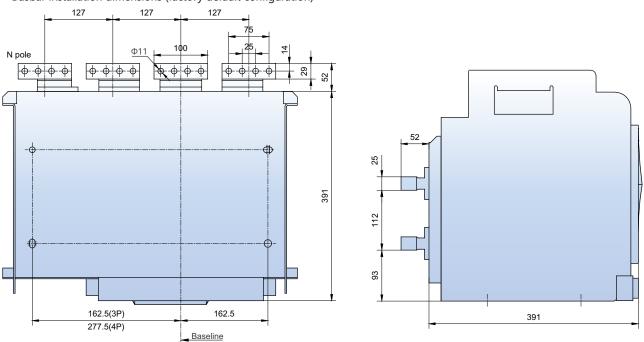
Figure 7.5 Overall dimension of NA8G-3200 withdrawable type

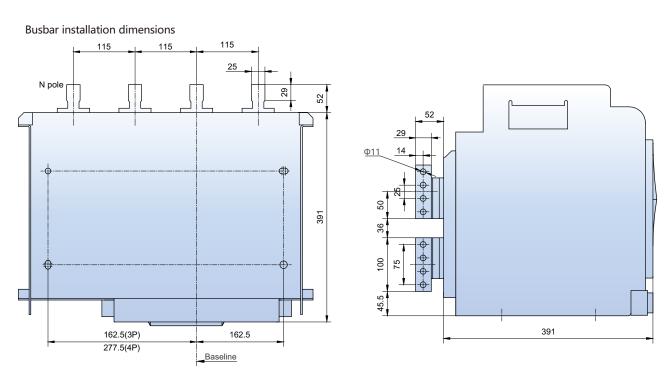
Hole size of the panel



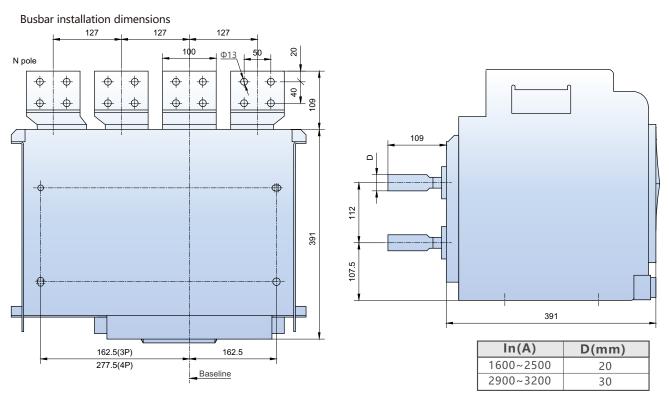
Busbar installation dimensions (factory default configuration)

Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.




Note: If the user wants to change the vertical connection to the horizontal connection on site, just rotate the busbar 90 °.

Busbar installation dimensions (factory default configuration)


Note: If the user changes the horizontal to vertical connection on the scene, the upper and lower buses of the N and B phases on both sides must be replaced with the same as the A and C buses of the middle.

Note: If the user changes the vertical to horizontal connection on the scene, the upper and lower buses of the N and C phases on both sides must be replaced with the same as the A and B buses of the middle.

Note: The extended busbar is an optional accessory, which requires additional costs.

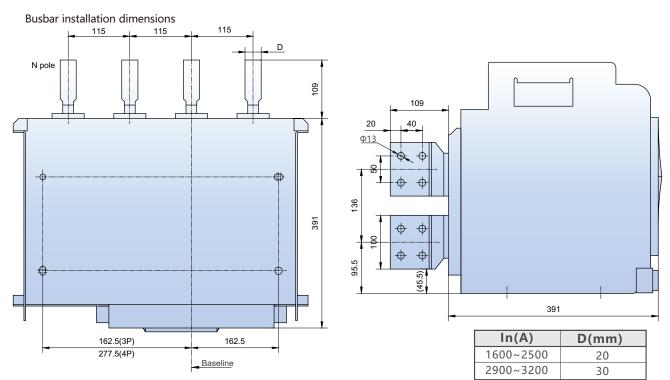


figure 7.5 -6 Horizontal extened busbar connection of NA8G-3200 withdrawable type

Note: The extended busbar is an optional accessory, which requires additional costs.

figure 7.5 -6 Vertical extened busbar connection of NA8G-3200 withdrawable type

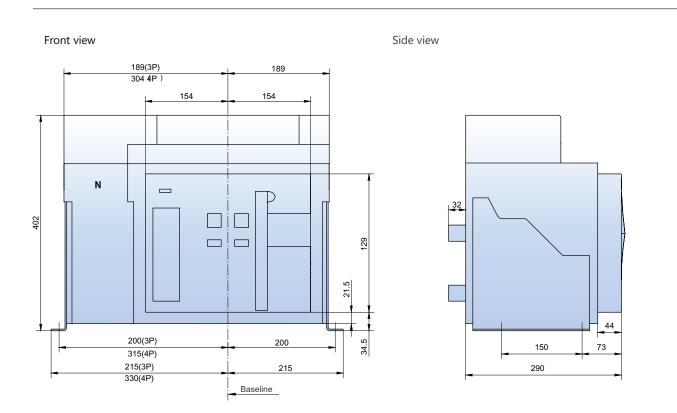
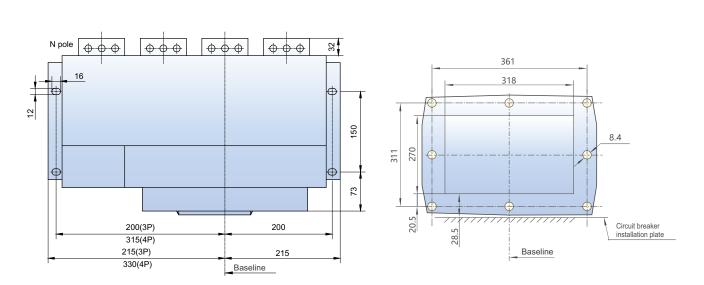
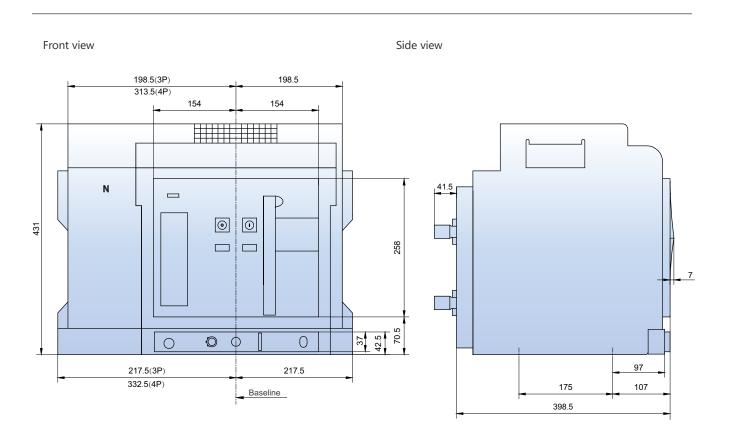
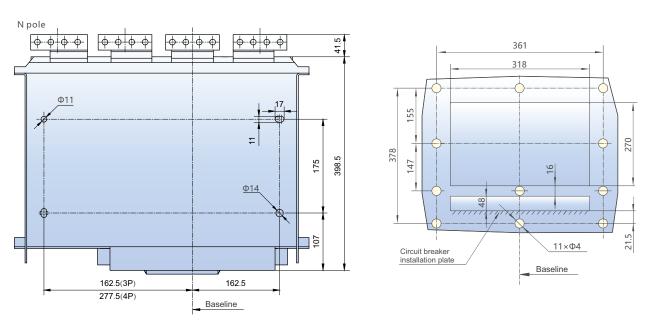
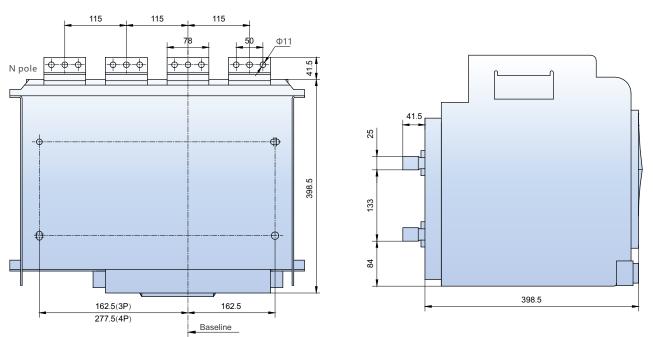



Figure 7.6 Overall dimension of NA8G-3200 fixed type

Hole size of the base

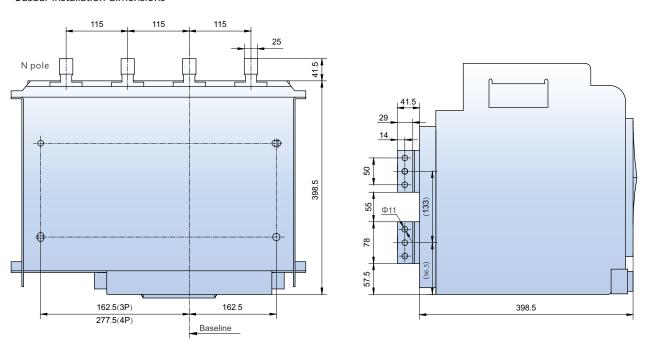
Hole size of the panel


Figure 7.7 Overall dimension of NA8G-4000 withdrawable type

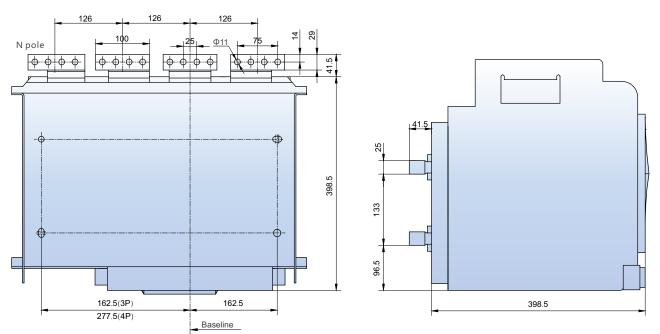
Hole size of the base

Hole size of the panel



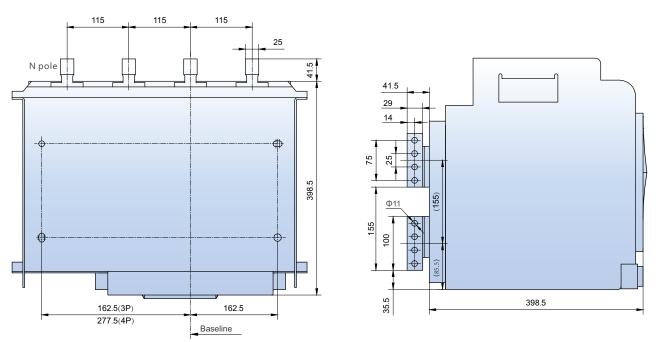
Busbar installation dimensions (factory default configuration)

Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the bus bar 90 °.



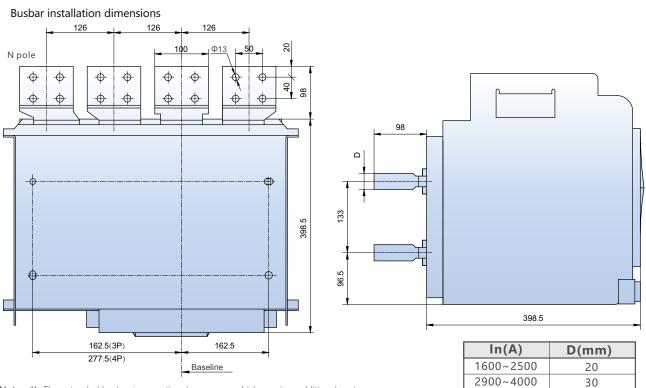
Busbar installation dimensions

Note: If the user wants to change the vertical connection to the horizontal connection on site, just rotate the bus bar 90 °.


Figure 7.1-3 Vertical busbar connection of NA8G-4000(In=1600A~2500A) withdrawable type

Busbar installation dimensions (factory default configuration)

Note: If the user changes the horizontal to vertical connection on the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the same as the A and C buses of the middle.



Busbar installation dimensions

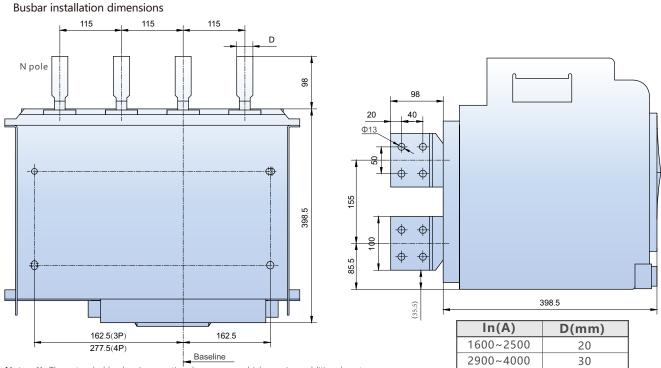
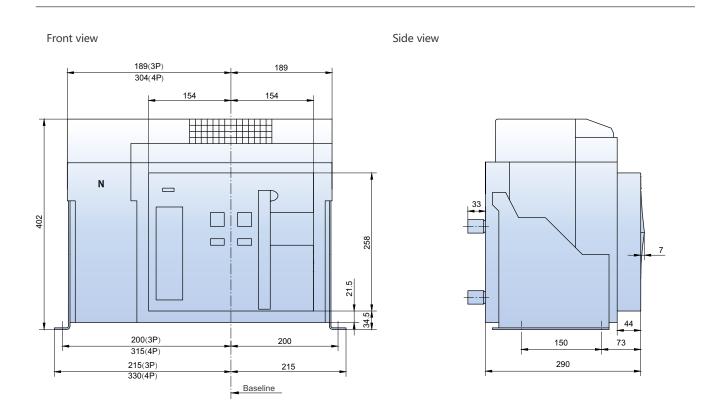

Note: If the user changes the vertical to horizontal connection on the scene, the upper and lower buses of the N and C phases on both sides need to be replaced with the horizontally connected bus specifications.

Figure 7.1-3 Vertical busbar connection of NA8G-4000(In=2900A~4000A) withdrawable type

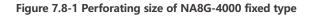
Note: 1) The extended busbar is an optional accessory, which requires additional costs; 2) If the user changes the horizontal to vertical connection at the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the same as the A and C buses of the middle.

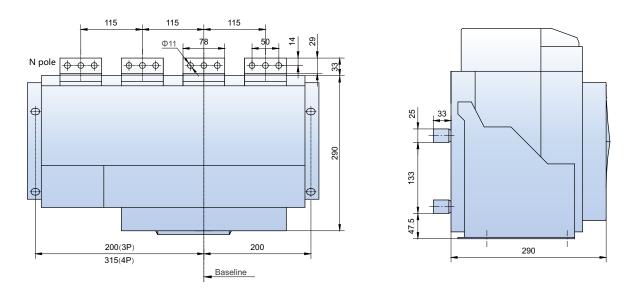

Note: 1) The extended busbar is an optional accessory, which requires additional costs;

2) If the user changes the vertical to horizontal connection at the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the horizontally connected bus specifications.

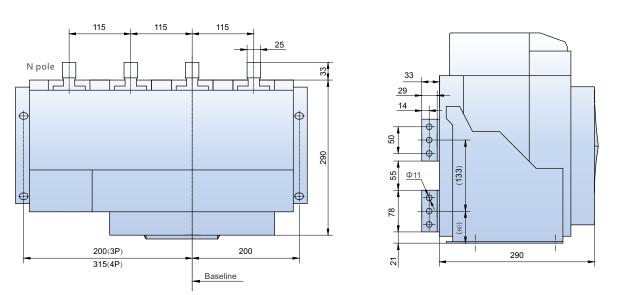
Figure 7.7-7 Vertical extened busbar connection of NA8G-4000 withdrawable type

(P-037) Air Circuit Breaker | NA8G


Hole size of the base

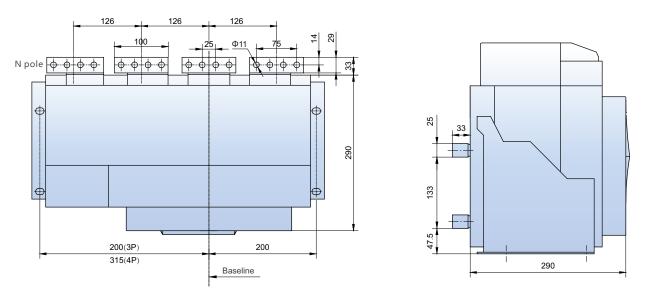


Hole size of the base

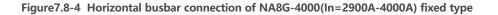


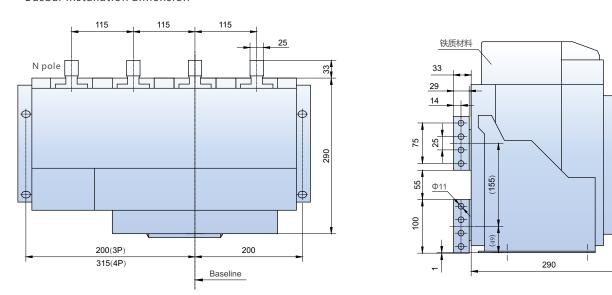
Busbar installation dimensions (factory default configuration)

Note: If the user wants to change the horizontal connection to the vertical connection on site, just rotate the busbar 90 °.



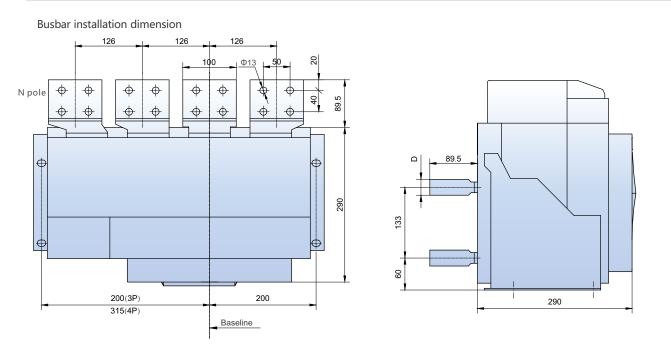
Busbar installation dimensions


Note: If the user wants to change the vertical connection to the horizontal connection on site, just rotate the busbar 90 °.


Figure 7.8-3 Vertical busbar connection of NA8G-4000(In=1600A-2500A) fixed type

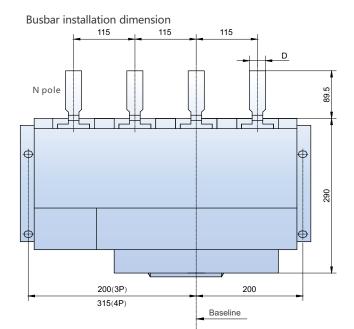
Busbar installation dimension (factory default configuration)

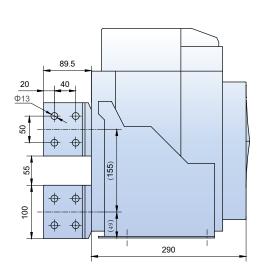
Note: If the user changes the horizontal to vertical connection on the scene, the upper and lower buses of the N and C phases on both sides need to be replaced with the same as the A and B buses of the middle.



Busbar installation dimension

Note: If the user changes the vertical to horizontal connection on the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the horizontally connected bus specifications.





Note: 1) The extended busbar is an optional accessory, which requires additional costs;2) If the user changes the horizontal to vertical connection on the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the same as the A and C buses of the middle.

In(A)	D(mm)
1600~2500	20
2900~4000	30

Note: 1) The extended busbar is an optional accessory, which requires additional costs;2) If the user changes the vertical to horizontal connection on the scene, the upper and lower buses of the N and B phases on both sides need to be replaced with the horizontally connected bus specifications.

In(A)	D(mm)
1600~2500	20
2900~4000	30

Hole size of the base

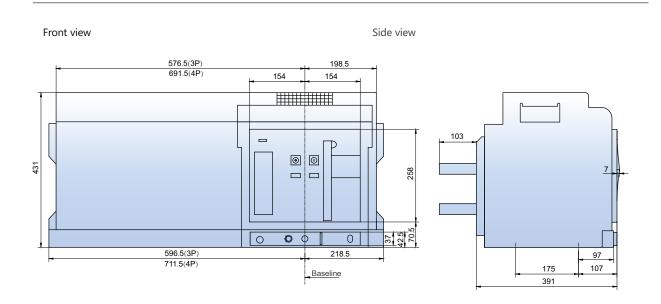
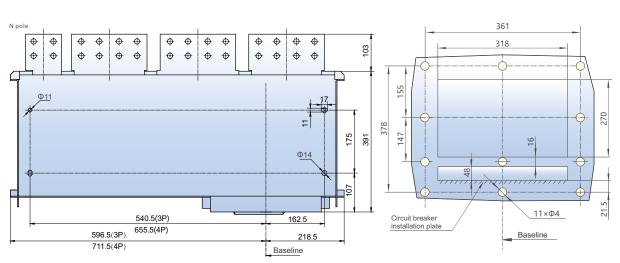
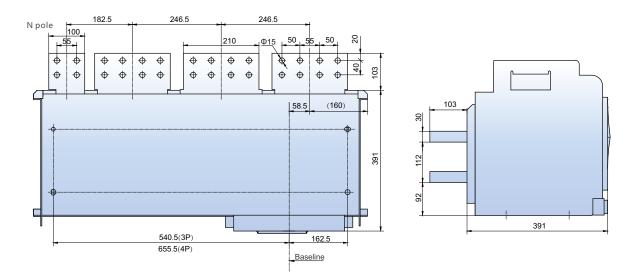
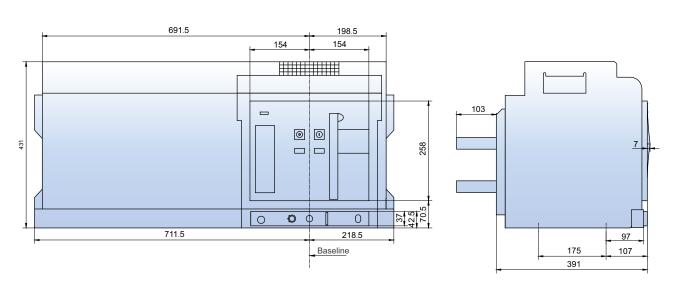




Figure 7.9 Overall dimension of NA8G-6300(In=4000A~5000A) withdrawable type

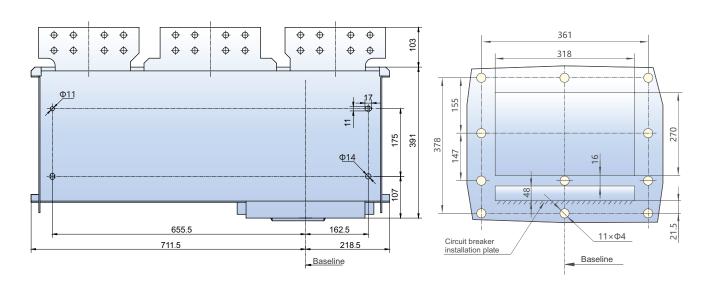
Hole size of the panel

Figure 7.9-1 Perforating size of NAG8-6300(In=4000A~5000A) withdrawable type

Busbar installation dimension (factory default configuration)


Figure 7.9-2 Horizontal busbar connection of NA8G-6300(In=4000A~5000A) withdrawable type

(P-043) Air Circuit Breaker | NA8G


Front view

Hole size of the base

```
Side view
```

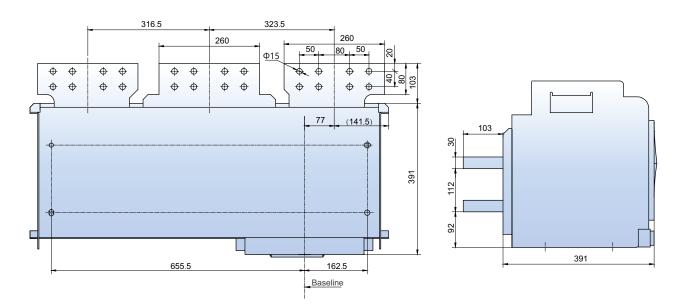
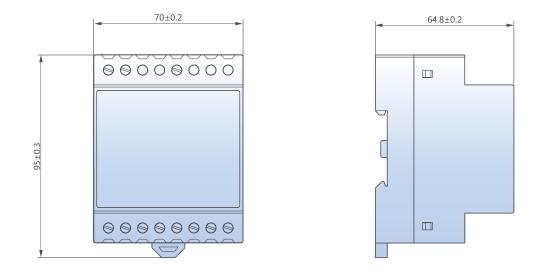


Figure 7.10 Overall dimension of NA8G-4000(In=6300A) withdrawable type


Hole size of the panel

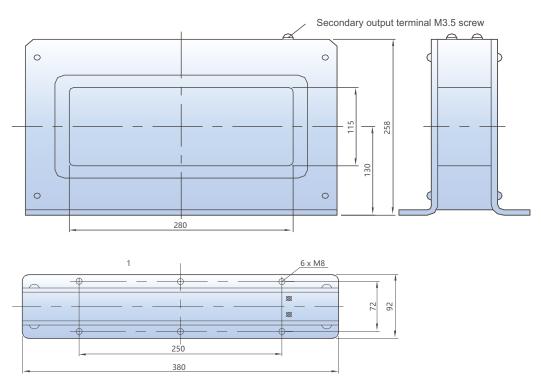
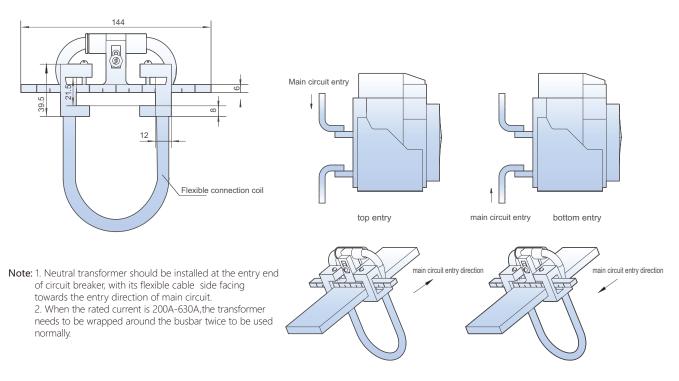

Busbar installation dimension (factory default configuration)

Figure 7.10-2 Horizontal busbar connection of NA8G-6300(In=6300A) withdrawable type

Note: Power module and RU-1 relay signal module are of same overall dimension, 35mm standard guide rail installation can also be used for installation.



Note: Circuit breaker with leakage transformer must use vertical bus connection.

Figure 7.12 Overall dimensions of leakage protection transformer

Front view

Figure 7.12 Overall dimensions of neutral pole current transformer

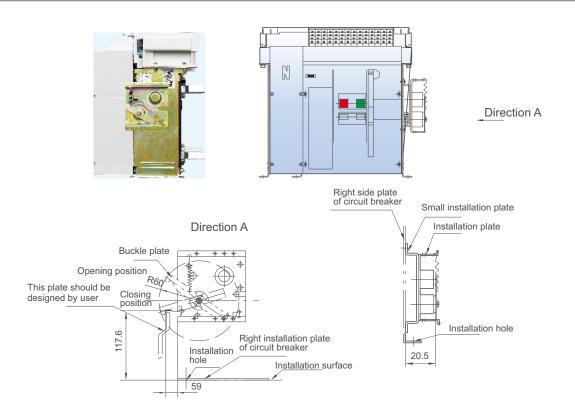


Figure 7.13 NA8G-1600 fixed type circuit breaker status door interlock installation dimensions

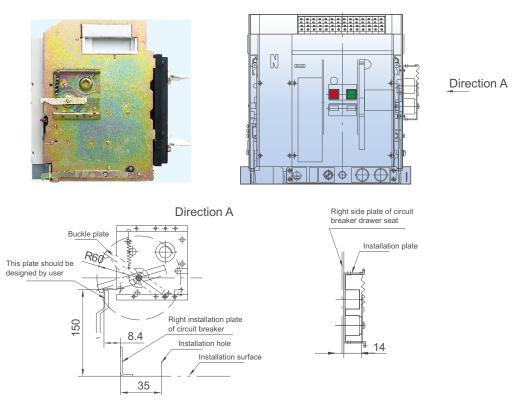


Figure 7.14 NA8G-1600 withdrawable type circuit breaker status door interlock installation dimensions

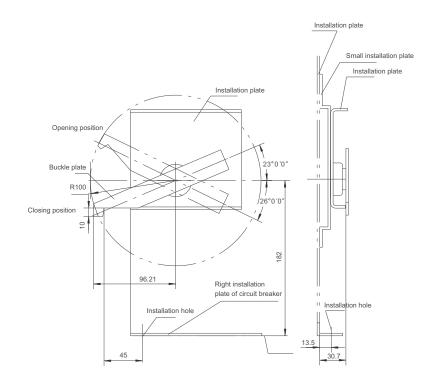


Figure 7.15 NA8G-2500~4000 fixed type circuit breaker status door interlock installation dimensions

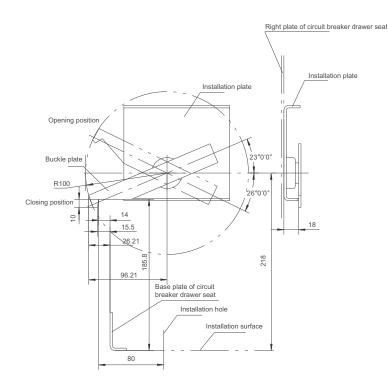
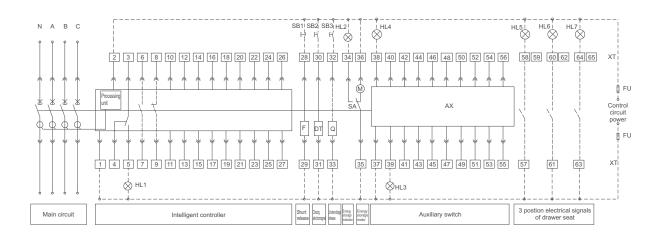
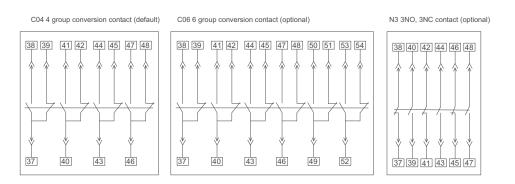




Figure 7.16 NA8G-2500~6300 withdrawable type circuit breaker status door interlock installation dimensions

8. Control Circuit Electrical Wiring Diagram

Figure 8.1 Control circuit wiring diagram of NA8G-1600 M controller

F-shunt release DT-closing electromagnet Q-undervoltage release M-motor operating mechanism

SA—position switch XT—terminal AX—auxiliary terminal SB1—Breaking button

SB2-Making button SB3-emergency stop button HL1-fault indicator HL2-energy storage indicator

HL3—Breaking indicator HL4—Making indicator HL5~7—position indicator

FU-fuse (6A)

1#, 2#: intelligent controller power: voltage AC220/380V, can be directly connected to 1#, 2#; If voltage is DC220/110V, a 24V output from power module is required before being connected to 1#. 2#

3#~ 5#: trip alarm contact (3 is the common contact)

6#~ 9#: auxiliary contact (1 NO and 1 NC contact), optional

10#, 11#: empty 12#~ 19#: empty

20#: empty 21#~ 24#: empty

24#, 25#: signal input contact for external N phase transformer, normally empty, used as signal input contact for external transformer if specially ordered by user

27#: protectively earthed, connected to exterior panel of circuit breaker

28#, 29#: shunt release; 30#, 31#: closing electromagnet; 32#, 33#: undervoltage release 34#~36#: motor operating mechanism

37#~ 56#: auxiliary contact. Normally 4 groups of changeover auxiliary contacts, 6 groups of changeover auxiliary contacts or 3NO/3NC contacts are available if specially ordered by user. 6-group conversion auxiliary contacts are only applicable to AC current.

57#~65#: 3 position signal indicator for withdrawable circuit breaker, no connection for regular delivery, only for withdrawable circuit breakers with the functions.

Note: Solid lines are factory connected, dotted lines need to be connected by user.

Figure 8.1-1 AX auxiliary contact wiring diagram of NA8G-1600 M controller

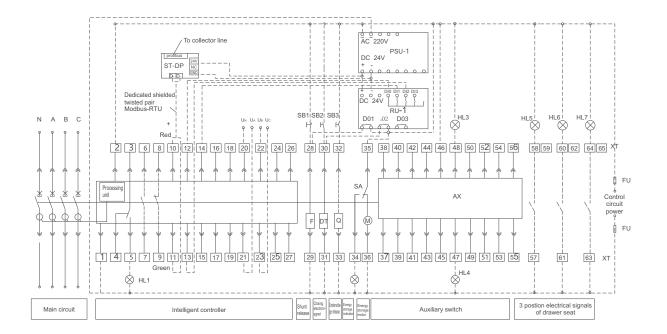
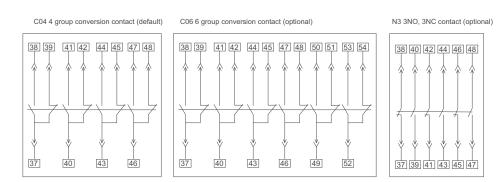



Figure 8.2 Control circuit wiring diagram of NA8G-1600 H controller

F—shunt release DT—closing electromagnet Q—under voltage release M—motor operating mechanism SA—position switch XT—terminal AX—auxiliary terminal SB1—Breaking button SB2—Makeing button SB3—emergency stop button HL1—fault indicator HL2—energy storage indicator HL3—Breaking indicator HL4—Makeing indicator HL5–7—position indicator FU—fuse (6A)

1#, 2#: intelligent controller power: voltage AC220/380V, can be directly connected to 1#, 2#; If voltage is DC220/110V, a 24V output from power module is required before being connected to 1#, 2#

3#~ 5#: trip alarm contact (3 is the common contact)

6#~ 9#: auxiliary contact (1 NO and 1 NC contact), optional

10#, 11#: H type intelligent controller default communication output terminal

12#~ 15#: 3 groups of programmable output signals, must be connected with external RU-1 relay module. Default outputs of H type intelligent controller with programmable output signals: 12#, 13#: closing signal output, 12#, 14#: opening signal output, 12#, 15#: fault trip. No connection for normal product.

19#: H intelligent controller communication shield grounding.

20#~ 23#: voltage display input signal terminal, 20#: Phase N voltage signal, 21#: phase A voltage signal, 22#: phase B voltage signal, 23#: phase C voltage signal. No connection for normal product.

24#, 25#: signal input contact for external N phase transformer or external earth current transformer, normally empty, used as signal input contact for external transformer if specially ordered by user.

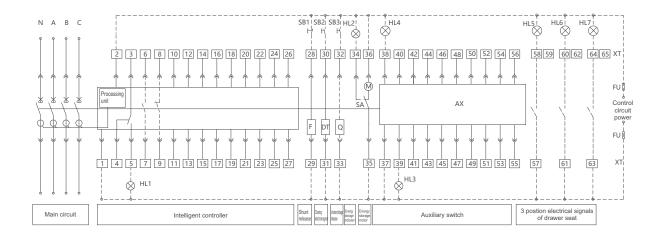
27#: protectively earthed, connected to exterior panel of circuit breaker.

28#, 29#: shunt release; 30#, 31#: closing electromagnet; 32#, 33#: undervoltage release

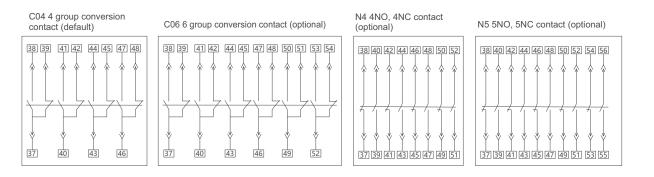
34#~36#: motor operating mechanism

 $37\#\sim$ 56#: auxiliary contact. 6-group conversion auxiliary contacts are only applicable to AC current.

Normally 4 groups of changeover auxiliary contacts, 6 groups of changeover auxiliary contacts or 3NO/3NC contacts are available if specially ordered by user.


57#~65#: 3 position signal indicator for withdrawable circuit breaker, no connection for regular delivery, only for withdrawable circuit breakers with the functions.

ST-DP: DP protocol module, no need for ST-DP protocol module if upstream communication protocol is Modbus-RTU; use ST-DP protocol module to transfer Modbus-RTU protocol into Profibus-DP protocol if upstream communication protocol is Profibus-DP, which will be charged separately.


RU-1: relay module. Upstream machine opens and closes circuit breaker through remote control, used for opening and closing signal energy amplification, which will be charged separately.

Note: Solid lines are factory connected, dotted lines need to be connected by user.

Figure 8.2-1 AX auxiliary contact wiring diagram of NA8G-1600 H controller

Figure 8.3 Control circuit wiring diagram of NA8G-2500~6300 M controller

F--shunt release DT--closing electromagnet Q--under voltage release M--motor operating mechanism

SA—position switch XT—terminal AX—auxiliary terminal SB1—Breaking button

SB2—Makeing button SB3—emergency stop button HL1—fault indicator HL2—energy storage indicator HL3—Breaking indicator HL4—Makeing indicator HL5~7—position indicator FU—fuse (6A)

1#, 2#: intelligent controller power: voltage AC220/380V, can be directly connected to 1#, 2#; If voltage is DC220/110V, a 24V output from power module will be required before being connected to 1#, 2#

3#~ 5#: trip alarm contact (3 is common contact)

6#~ 9#: auxiliary contact (1 NO and 1 NC contact), optional

10#, 11#: empty

12#~ 19#: empty

- 20#: empty
- 21#~ 24#: empty

24#, 25#: signal input contact for external N phase transformer, normally empty, used as signal input contact for external transformer if specially ordered by user.

27#: protectively earthed, connected to exterior panel of circuit breaker.

28#, 29#: shunt release; 30#, 31#: closing electromagnet; 32#, 33#: undervoltage release 34#~36#: motor operating mechanism

37#~ 56#: auxiliary contact. 6-group conversion auxiliary contacts are only applicable to AC current.

Normally 4 groups of changeover auxiliary contacts, 6 groups of changeover auxiliary contacts or 4NO/4NC contacts and 5NO/5NC contacts are available if specially ordered by user.

 $57\#\sim65$ #: 3 position signal indicator for withdrawable circuit breaker, no connection for regular delivery, only for withdrawable circuit breakers with the functions.

Note: Solid lines are factory connected, dotted lines need to be connected by user.

Figure 8.3-1 AX auxiliary contact wiring diagram of NA8G-2500~6300 M controller

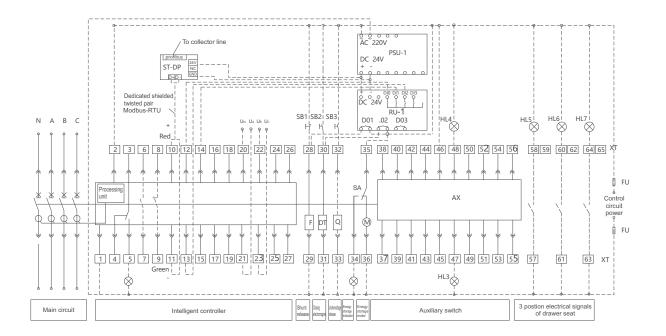
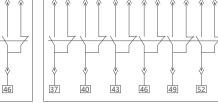



Figure 8.4 Control circuit wiring diagram of NA8G-2500~6300 H controller

C04 4 group conversion contact (default) 38 39 41 42 44 45 47 48

43

C06 6 group conversion contact (optional) 38 39 41 42 44 45 47 48 50 51 53 54

F—shunt release DT—closing electromagnet Q—undervoltage release M—motor operating mechanism SA—position switch XT—termial AX—auxiliary terminal SB1—Breaking button

SB2-Makeing button SB3-emergency stop button HL1-fault indicator HL2-energy storage indicator HL3-Breaking indicator HL4-Makeing indicator HL5~7-position indicator FU-fuse (6A)

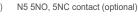
14.2#:intelligent controller power: voltage AC220/380V, can be directly connected to 1#, 2#; If voltage is DC220/110V, a 24V output from power module is required before being connected to 1#, 2#

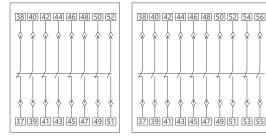
3#~ 5#: trip alarm contact (3 is common contact)

37

40

6#~ 9#: auxiliary contact (1 NO and 1 NC contact), optional


10#, 11#; H type intelligent controller default communication output terminal


12#~ 15#: 3 groups of programmable output signals, must be connected with external RU-1 relay module. Default outputs of H type intelligent controller with programmable output signals: 12#, 13#: closing signal output, 12#, 14#: opening signal output, 12#, 15#: fault trip. No connection for normal product.

19#: H intelligent controller communication shield grounding.

20#~ 23#: voltage display input signal terminal, 20#: N phase voltage signal, 21#: phase A voltage signal, 22#: phase B voltage signal, 23#: phase C voltage signal. No connection for normal product

N4 4NO, 4NC contact (optional)

24#, 25#: signal input contact for external N phase transformer or external earth current transformer, normally empty, used as signal input contact for external transformer if specially ordered by user.

27#: protectively earthed, connected to exterior panel of circuit breaker.

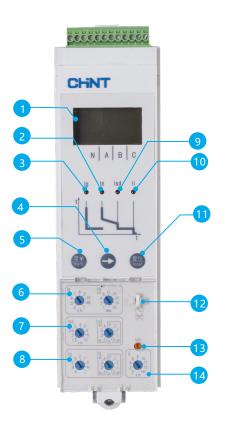
28#, 29#: shunt release; 30#, 31#: closing electromagnet; 32#, 33#: undervoltage release 34#~36#: motor operating mechanism

37#~ 56#: auxiliary contact. 6-group conversion auxiliary contacts are only applicable to AC current.

Normally 4 groups of changeover auxiliary contacts, 6 groups of changeover auxiliary contacts or 4NO/4NC contacts and 5NO/5NC contacts are available if specially ordered by user

57#~65#: 3 position signal indicator for withdrawable circuit breaker, no connection for regular delivery, only for withdrawable circuit breakers with the functions.

ST-DP: DP protocol module, no need for ST-DP protocol module if upstream communication protocol is Modbus-RTU; use ST-DP protocol module to transfer Modbus-RTU protocol into Profibus-DP protocol if upstream communication protocol is Profibus-DP, which will be charged separately.


RU-1: relay module. Upstream machine opens and closes circuit breaker through remote control, used for opening and closing signal energy amplification, which will be charged separately

Note: Solid lines are factory connected, dotted lines need to be connected by user.

Figure 8.4-1 AX auxiliary contact wiring diagram of NA8G-2500~6300 H controller

9. Intelligent controller usage

9.1 Operation interface of M type (basic type) intelligent controller

1 Display window: shows current value, setting parameters, fault current, release time, etc.

2 Ir indicator: overload long-time-delay fault indication.

3 Ig indicator: earth, neutral fault indication.

4 "---" button: used to query the current value of each phase; after entering the submenu, select the contents in the submenus of each level in a cycle.

5 Menu button: Press the menu button to enter the sub-menus of each level in turn.

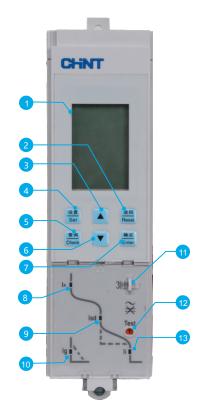
6 Overload and long-time-delay protection settings: the left knob is for setting the multiple of the long delay protection current; the right knob is for setting the delay time.

7 Short-circuit short-time-delay protection setting: The left-hand knob is for setting the multiple of the short-time-delay protection current.

8 Earth fault protection setting: the left knob is for setting the earth fault protection current multiple; the right knob is for setting the delay time.

9 Isd indicator: short-circuit short-time-delay fault indication.

10 li indicator: short-circuit instantaneous fault indication.


11 Reset button: return to the previous menu; the controller software is reset, the reset button must be pressed after the knob setting switch is adjusted; control. There is a fault memory after the device trips, it must be cleare by pressing the reset key.

12 Cover lock hole.

13 Button for tripping test.

14 Short-circuit instantaneous current protection setting: Knob setting instantaneous protection multiple of current.

- 1 Display window: shows current, set parameters, fault current, release time, etc.
- 2 Return key: exit current menu to previous one, or cancel current parameter setting value
- 3 Up key: move select box upwards under current menu, or used to input "+" setting value under parameter setting
- 4 Setup key: switch to default setup menu
- 5 Inquiry key: switch to default inquiry menu
- 6 Down key: move select box downwards under current menu, or used to input "-" setting value under parameter setting
- 7 Confirm key: enter the next menu of the selected box, or save current parameter setting
- 8 Ir indicator for overload long-time-delay tripping
- 9 Isd indicator for short circuit short-time-delay tripping
- 10 Ig indicator for earth fault tripping
- 11 Cover lock hole
- 12 Button for tripping test
- 13 li indicator for short-circuit instantaneous tripping

9.3 Intelligent controller feature introduction

9.3.1 Overcurrent protection curve

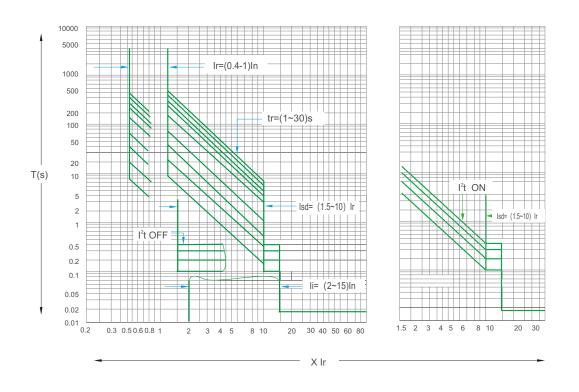


Figure 9.3-1 Overcurrent protection curve

Figure 9.3-2 Neutral line (earthing) fault protection curve

9.4 Intelligent controller protection features

a.Overload long time delay protection

The overload long delay protection function is generally used to protect the cable overload, and the protection is based on the true RMS value of the current.

Table 17 Parameter setting and action characteristics of overload long delay

Setting paramet	ers		Setting range C				Current action error		
Long-time-delay current : Ir	setting val	Iue M type: (0.4~1.0) In H type: (0.4~1.0) In+OFF							
Long-time-delay current se	etting step	H type:	1A (1600~	2500 frame); 2A (320)0 ~ 6300 fra	me)		
Long-time-delay time settin	g value tr	(1-2-4-8	3-12-16-20-2	24-30) s				±10%	
Inverse time characteristic		$t = \left(\frac{6}{N}\right)^2$	$t = \left(\frac{6}{N}\right)^2 \times tr$						
Multiple of fault current			Action time						
l < 0.85lr	No	action							
l > 1.15lr	Act	ion							
1.5lr	16	32	32 64 128 192 256 320 384 48					480	
2.0Ir	9	18	18 36 72 108 144 180 216 2					270	
6.0Ir	1	2	4	8	12	16	20	24	30

Note: For the inverse time characteristic curve, its code meaning is

N --- fault current divided by multiple of set current I / Ir

t --- Delay time for fault action

tr --- long delay time set value

Allowable error of operating time ± 15%

Conventional factory setting: overload long delay current 1.0In;

Normal factory setting: Action time 2s (under 6Ir)

Example: Known overload long delay current 1.0ln, delay time 2s (under 6lr), now line current I = 1.8ln, the actual fault action delay time can be calculated:

N = 1.8ln / 1.0ln = 1.8

t = (6 / 1.8) 2 × 2 = 22.2s

b. Short-circuit short-delay protection

The short-time delay protection is based on the current effective value (RMS) protection, which is divided into two sections: the antitime section and the definite-time section; it further strengthens the cooperation with the lower-level protection devices.

Table 18 Short circuit short delay parameter settings and operating characteristics

Setting parameters	Setting range Current action e			
Short delay current	M type: 1.5 10 In	±10%		
setting value Isd	H type: (1.5~10) In+O	FF	_ 10,70	
Short delay current setting step	H type: 1A (1600~2500	frame) ; 2A (3200~6300 frame)		
Short delay time setting	M typeDefinite-time limit 0.1 0.2	0.3 0.4 anti-time limit 0.1 0.2 0.3 0.4	± 15% or inherent ± 40ms	
value tsd	H typeDefinite-time limit: 0.11、0.	(take the maximum value)		
Current	Action time			
l < 0.91sd	No action			
l > 1.15Isd	Delay action			
lsd <l≤10lr< td=""><td>Anti-time limit</td><td>Operating characteristics I²t= (10I_r) ²tsc</td><td>1</td></l≤10lr<>	Anti-time limit	Operating characteristics I ² t= (10I _r) ² tsc	1	
ISU<1510II	Anti-time limit	Setting time (s): 0.1、0.2、0.3、0.4		
		Setting time (s): 0.11 0.21 0.31 0.41		
l≥1.1lsd	Definite-time limit	Minimum (s): 0.06、0.16、0.255、0.34		
	Maximum(s): 0.14、0.24、 0.345、 0.46			
Retur	e time	0.05、0.14、0.25、0.33		

Note: For the anti-time characteristic curve, its code meaning is

- Isd --- short-time-delay current set value
- I ----- fault current value
- Ir ---- long-time-delay current set value
- t ----- fault action delay time

tsd --- short-time delay to achieve the set value

Allowable error of action time \pm 15%

Conventional factory setting: short delay current 8.0Ir;Conventional factory setting: short delay time limit 0.41s.

c. Short-circuit transient protection characteristics

The short-circuit instantaneous protection function prevents solid-state short-circuits in the power distribution system. Such faults are generally phase-to-phase faults. The short-circuit current is large and needs to be quickly disconnected. Instantaneous protection is based on the true RMS value of the current.

Table 18 Short-circuit transient protection characteristics

Setting parameters	Setting range
Instantaneous current setting value li	(2~15) In+OFF
Instantaneous current	1A (1600 ~ 2500 frame)
setting step	2A (3200 ~ 6300 frame)
	I < 0.85li no action
Action characteristics	I > 1.15li action
	Action time ≤100ms

d. Single-phase ground protection

For single-phase metal grounding protection, there are two protection methods: vector sum (difference) type (T) and ground current type (W). The vector sum type detects the zero-sequence current, that is, takes the vector sum of the four-phase (three-phase four-wire system) or three-phase (three-phase three-wire system) current for protection. The ground current type uses a special external transformer to directly detect the current on the ground cable. It can simultaneously protect the upper and lower ground faults of the circuit breaker. The maximum distance between the transformer and the circuit breaker does not exceed 5 meters.

Table19 Earthing fault protection setting range

Product model	Setting range	Setting step	Current error
1600 frame	(0.2~1.0) In+OFF, Max 1200A	1A	
2500 frame	(0.2~1.0) In+OFF, Max 1200A	1A	±15%
3200~6300 frame	500A ~ 1200A+OFF	2A	

Table20 Definite-time earth fault protection features

fault current	Delay action time (s)				
	Setting time	0.11	0.21	0.31	0.41
> lg	Minimum delay	0.06	0.16	0.255	0.34
2 Ig	Maximum delay	0.14	0.24	0.345	0.46
	Returnable time	0.05	0.14	0.25	0.33

fault current	Delay action time (s)				
	Setting time	0.1	0.2	0.3	0.4
> lg and (I≥0.8In or 1200A)	Minimum delay	0.06	0.16	0.255	0.34
01 1200A)	Maximum delay	0.14	0.24	0.345	0.46
> lg and (l < 0.8ln	Inverse time delay	$t = \frac{(I_g)^2}{I^2} >$	tg		
or 1200A)	Returnable time	0.05	0.14	0.25	0.33

Table 21 Anti-time earth fault protection features

Note: Ig-Set value for Earthing protection;

I-Fauit current value

T-Fauit operation delay time

tg-Set value for earthing inverse time lag

Allowable error of inverse time lag operation time ±15%

Normal factory setting:OFF

9.5 Auxiliary Function Description

9.5.1 Test function description

When the controller cooperates with the circuit breaker in the field debugging, periodic inspection or maintenance, it needs to use the controller's test function to break several times to check the cooperation between the controller and the circuit breaker. After the circuit breaker is closed, press the "test" button, and the intelligent controller will trip instantaneously to open the circuit breaker.

Notes: a. This function can only be used during on-site debugging or maintenance of the circuit breaker. Do not use it during normal operation.

b. Before closing the controller, the reset button above the controller panel must be pressed before the circuit breaker can be closed and put into operation again.

9.5.2 Fault memory description

After the controller is reset or powered off, it still has fault memory function, which keeps the most recent historical event for easy analysis after the event. Only when a new fault occurs again, the original information is cleared and the latest fault data is saved. For the query method, refer to the description of the fault display above.

9.6 Display Function Description

When the rated current is 400A or more, the single-phase current is not less than 0.4In, and the controller works normally when the three-phase is not less than 0.2In. When the rated current is less than 400A, the single-phase is not less than 0.8In, and the three-phase is not less than 0.4In, the controller works normally.

Notes: When power is applied to the ST 220V AC power module, the controller will no longer display when the voltage drops to AC120V.

When power is applied to the ST 380V AC power module, the controller will no longer display when the voltage drops to AC200V.

a. Current display

Current display error range: ± 5%

b. Voltage display

Voltage display error range: ± 1.5%

10. Circuit Breaker Accessories

1600 frame size CC

2500-6300 frame size CC

1600 frame size ST

2500-6300 frame size ST

1600 frame size UVT

2500~6300 frame size UVT

10.1 Closing electromagnet (CC)

After the operation mechanism finishes energy storage, CC is energized and ready for remote closing.

Table 23 Operation feature of Closing electromagnet

Feature		СС
	VAC 50/60HZ	220/230/240
Power Supply		380/400/415
	VDC	220,110
Operation voltage	·	0.85-1.1Us
Frame size: power	AC	400VA
consumption (VA or W)	DC	1600: 380W; 2500~6300: 130W
Circuit breaker respo	nse time	30ms-45ms

10.2 Shunt release (ST)

After being energized, ST will instantaneously disconnect the circuit breaker, to realize remote opening.

Table 24 Operation feature of Shunt release

Feature		ST
	VAC 50/60HZ	220/230/240
Power Supply	VAC 50/60HZ	380/400/415
	VDC	220,110
Operation voltage		0.85-1.1Us
Frame size: power	AC	400VA
consumption (VA or W)	DC	1600: 380W; 2500~6300: 130W
Circuit breaker respo	nse time	25ms-35ms

10.3 Undervoltage release (UVT)

If the supply voltage drops to any point between 35%-70% of rated voltage, the release coil will disconnect the circuit breaker instantaneously. If the UVT release coil is not energized, the circuit breaker cannot be closed manually (closing button) or electrically (closing electromagnet). The circuit breaker can only be closed when the supply voltage of UVT release coil reaches 85% of rated voltage.

Delayed undervoltage release (UVTD)

To prevent unintended release due to voltage drop in short time, we add an operation delay to UVT by adding a delay unit.

Table 25 Operation feature of undervoltage release

Feat	ure		
	VAC 50/60HZ		220/230/240
Power Supply	VA	C 30/00HZ	380/400/415
,		VDC	-
	Open	0.35-0.7Ue	0.35-0.7Ue
Operation threshold	Close	0.85Ue	0.85-1.1Ue
Frame size: power			1600: 220W/15W;
consumption	0	VT	2500~6300: 220W/13W
	UVTD .		1600: 20VA
(VA or W)			2500~6300: 48VA
Adjustable time		1s-5s, de	lay time adjustable

Notes: a.closing/maintain.

b.only NA8G-1600 uses external undervoltage delay module, delay unit is integrated into the undervoltage delay release for 2500-7500 products.

1600 frame size MO

2500-7500 frame size MO

1600 frame size OF

2500-6300 frame size OF

10.4 Motor operation mechanism (MO)

Storage energy by motor and automatically after circuit breaker closing, to ensure the circuit breaker can close immediately after opening. Energy storage handle used as standby measure if there is no auxiliary power supply.

Table 26 Feature of motor operation mechanism

Fe	ature	
Dower Supply	VAC 50/60HZ	220/230/240, 380/400/415
Power Supply	VDC	110, 220
Operation threshold		0.85-1.1Us
Frame size: power		1600:75W; 2500:85W; 3200:110W;
consumption (VA or W)		4000:150W; 6300:150W
Motor overcurrent time		≤1min
Energy storage time		≤7s
Operation	frequency	≤2times/min

After the motor operation mechanism (MO) finishes energy storing, the internal indication contact will switch to output, user may connect the energy storage indicator, see the table below for feature of indication contact.

Table 27 Indication contact technical parameters

Spring energy storage indication contact							
Standard supply 1NO							
Breaking capacity		Current (A)/Voltage (V)					
Application type	VAC (AC-15)	1.3/240, 0.75/415					
	VDC (DC-13)	0.55/220, 0.27/110					

10.5 Auxiliary contacts (OF)

Standard configuration: 4 groups of changeover contacts (4CO) Optional configuration:

6 groups of changeover contacts (6CO) Optional for NA8 full series

- 3NO, 3NC (N3) Optional for NA8-1600
- 4NO, 4NC (N4) Optional for NA8-2500-7500

5NO, 5NC (N5) Optional for NA8-2500-7500

Table 29 Auxiliary contact technical parameters (1)

Features								
	Auxiliary model	4CO/N4/N5	6CO(1600)					
	Breaking capacity	Current (A)	Current (A)					
Application type	230/240VAC(AC-15)	1.3	1.3					
	400/415VAC(AC-15)	0.75	0.75					
	110VDC(DC-13)	0.55	-					
	220VDC(DC-13)	0.27	-					

	Features			
	Auxiliary model	6CO (2500 and above)		
	Breaking capacity	Current (A)		
	230/240VAC(AC-15)	1.3		
Application	400/415VAC(AC-15)	0.75		
type	110VDC(DC-13)	0.55		
	220VDC(DC-13)	0.27		

Table 30 Auxiliary contact technical parameters (2)

Note: 6 groups of changeover contacts of NA8G-1600 is not applicable to DC operation voltage.

10.6 Key lock (KL)

Key lock is used to lockout the opening button of circuit breaker. After pulling out the key, you will not be able to close the circuit breaker manually or electrically, and the circuit breaker will maintain opening status; user may choose this option, and we will provide lock and key; there are 3 types of key locks:

- 1 lock and 1 key (1S1S): 1 circuit breaker with an independent lock and a key
- 2 locks and 1 key (2S1S): 2 circuit breakers with two identical locks and a key
- 3 locks and 2 keys (3S2S): 3 circuit breaker with 3 identical locks and 2 keys
- Notes: 1. Before you pull out the key, you must press the opening button first, then rotate the key counterclockwise;

2. If user purchase key lock separately, then you must use hole opener to open a hole on the panel before installation, there are two diameters available: Φ 21mm (NA8-1600)and ϕ 24mm (NA8-2500~6300), hole opener should be provided by user itself.

10.7 Button lock (PL)

A padlock is used to lock the mechanical breaking and closing buttons on the panel. After lockout, user will not be able to open or close the circuit breaker manually (padlock should be provided by user itself).

10.8 Padlock for drawer seat disconnect position

Use the padlock to lock the drawer seat and body at disconnect position, at this position, user cannot insert the drawer seat rotation handle into the hole to rotate and change the position of withdrawable circuit breaker body.

Padlock should be provided by user itself.

10.9 Padlock for drawer seat baffle

If a padlock is used, user ensure the body contact will not be connected with external live circuit when the circuit breaker body is at disconnect or test position.

Padlock should be provided by user itself.

10.10 Circuit breaker status door interlock

This interlock can prevent the cabinet from being opened when the circuit breaker is under closing status; the cabinet can only be opened when the circuit breaker is under opening status.

10.11 Circuit breaker position door interlock

This interlock can prevent the cabinet from being opened when the circuit breaker is at connect or test position; the cabinet can only be opened when the circuit breaker is at disconnect position. This device is only applicable to withdrawable products.

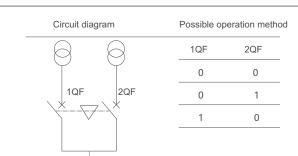
10.12 Three-position electrical signal device CE-CT-CD

Use the rotary handle to shake the circuit breaker body to any position of separation, test, and connection. The device will output a group of normally closed signals for users to detect position signals. The internal indicator contact characteristics are shown in the table below.

Table 29 Indicating contact technical parameters

Spring energy storage indicator contact							
Provided	as standard	1NO					
Break-off		Current (A) /Voltage (V)					
Use category	VAC (AC-15)	1.3/240, 0.75/415					
	VDC (DC-13)	0.55/220, 0.27/110					

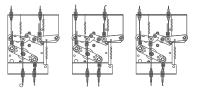
Installed between the phases of connector bar, to enhance the phase to phase insulation of circuit breaker.


10.14 Door frame and gasket

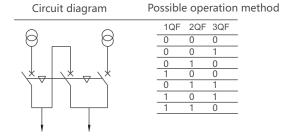
Installed on the cabinet door for sealing, with protection class of IP40.

10.15 Mechanical interlock ILK2 (steel cable double interlock)

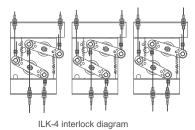
For interlock of two horizontally or vertically installed 3 pole or 4 pole circuit breakers.

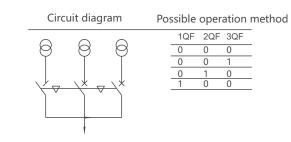

Notes: a. If user needs to bend the steel cable, the transition arc at the bend must be larger than R120mm, to ensure the flexible movement of the cable.

b. Check the cable and make sure there is sufficient lubricant to guarantee the flexible movement of the cable.


10.16 Mechanical interlock ILK3/4

For interlock of three horizontally or vertically installed 3 pole or 4 pole circuit breakers.


ILK-3 triple interlock circuit diagram



ILK-3 triple interlock diagram

ILK-4 triple interlock circuit diagram

Notes: a. If user needs to bend the steel cable, the transition arc at the bend must be larger than R120mm, to ensure the flexible movement of the cable.

b. Check the cable and make sure there is sufficient lubricant to guarantee the flexible movement of the cable.

11. Ordering Information

11.1 Circuit breaker configuration

Standard accessories	NA8G-1600		NA8G-2500		NA8G-3200		NA8G-4000		NA8G-6300
	Fixed	Withdrawable	Fixed	Withdrawable	Fixed	Withdrawable	Fixed	Withdrawable	Withdrawable
Circuit breaker body								-	
Withdrawer seat									
Intelligent controller									-
Horizontal connection									
Auxiliary contacts 4CO									
Fault release indication contact		•			-			-	-
Motor operation mechanism	•	•	•						
Closing electromagnet		•						-	
Shunt release		•							
Door frame		-							

Table 34 Circuit breaker standard configuration

Notes: The standard configuration above is for motor type products, in comparison with which the standard configuration of manual type does not include motor operation mechanism, closing electromagnet and shunt release.

Standard accessories	NA8G-1600		NA8G-2500		NA8G-3200		NA8G-4000		NA8G-6300
	Fixed	Withdrawable	Fixed	Withdrawable	Fixed	Withdrawable	Fixed	Withdrawable	Withdrawable
Undervoltage instantaneous release	•		•		-			-	
Relayed undervoltage release	•		•	•	•	-	•		
Opening and closing button								-	
Drawer position padlock								-	
Drawer safety baffle padlock								-	•
Body key lock									
Position door interlock		-						=	
Status door interlock						•		•	•
Auxiliary contacts 6CO				-		•		-	•
Auxiliary contacts N3									
Auxiliary contacts N4						-		-	
Auxiliary contacts N5								-	
Drawer position indication contact								-	•
External neutral line transformer	•		•		-			-	
Earth current transformer and accessories	•		•				•		
Interphase barrier								-	
Mechanical interlock (2 sets)								-	
Mechanical interlock (3 sets)						•			

Table 35 Circuit breaker optional accessories

11.2 Circuit breaker selection table

Table 36 Circuit breaker selection table

Frame size current	NA8G-1600	NA8G-2500	NA8G-3200	NA8G-4000	NA8G-6300					
	200A 🗆	630A 🗆	1600A 🗆	1600A 🗆	4000A 🗆					
	400A 🗆	800A 🗆	2000A 🗆	2000A 🗆	5000A 🗆					
Rate current	630A 🗆	1000A 🗆	2500A 🗆	2500A 🗆	6300A 🗆					
	800A 🗆	1250A 🗆	2900A 🗆	2900A 🗆						
	1000A 🗆	1600A 🗆	3200A 🗆	3200A 🗆						
	1250A 🗆	2000A 🗆		4000A 🗆						
	1600A 🗆	2500A 🗆								
Number of poles	3P 🗆	4P 🗆								
Installation method	Withdrawable	Fixed □(not	available for NA8G-63	00)						
Bus connection	Horizontal	Vertical	Mixed 🗌 (spe	ecify)						
Intelligent controller	M type □(basic) H t	M type □ (basic) H type □ (communication)								
Churt class mater	Closing electromagnet Shunt release Energy storage motor									
Shunt, close, motor	AC220/230V □ AC380/400 V □ DC220V □ DC110V □									
Undervoltage release	AC220/230V 🗆 AC380/400V 🗖									
Auviliany contact	NA8G-1600 C04 (standard) C 06 (only for AC) N3 (only for AC)									
Auxiliary contact	NA8G-2500~6300 C04 (standard) C 06 🗆 N4 🗆 N5 🗆									
Auxiliary contact indicator(optional)	3 position signal device for drawer seat □									
Connection accessories (optional)	Interphase barrier									
	External transformer: N phase external transformer External LEC leakage transformer Earth current protection transformer									
Controller functions			protection 🗌 Earth current	•						
and accessories		ock protection 📋 Energy r	measurement and protection	on 📋 Signal contact outpu						
(optional)	Notes: 1) 3P+N protection requires N phase external transformer;									
(optional)	 Leakage protection requires external LEC leakage transformer; Earth current protection requires earth current protection transformer. 									
	5) cartineurient prote	earth cutterit pro	rection transformer.							
Locking mechanism (Optional)	Breaking and making	j button lock 🗌 1 lock	1 key 🗌 2 locks 1 key	🗌 3 locks 2 keys 🗌						
Mechanical interlock (Optional)	Steel cable interlock	Steel cable interlock (dual interlock) Steel cable interlock (MIT-3) Steel cable interlock (MIT-4)								
Module (Optional)	PSU-1 RU-1 ST-DP protocol conversion module									

Notes:1) specify frame size current, rated current and auxiliary control voltage when ordering.

2) Please mark "□" or "√" in the "-" to select the option you need; if not marked, we will delivery with factory settings.

3) Extra charges are required for additional functions and special requirements. Telephone:

Fax: 0577-62877777-706288

Configuration

1. NA8G-1600-6300 regular configuration

Shunt release, closing electromagnet, 4 groups of auxiliary changeover contacts, motor, M type intelligent controller, main circuit horizontal connection, door frame, main circuit installation bolts, circuit breaker manual, package box, drawer seat (withdrawable circuit breaker).

2. Optional configuration (extra charges)

NA8G-1600 optional configuration: undervoltage instantaneous release, undervoltage delayed release, steel cable interlock, keylock, external transformer ground protection, 6 groups of auxiliary changeover contacts, 3 NO 3 NC contacts, H type intelligent controller, optional H type functions, interphase barrier, position signal.

NA8G-2500-6300 optional configuration: undervoltage delayed release (1s-5s adjustable), steel cable interlock, button lock, keylock, door interlock, external transformer ground protection, vertical connection, 6 groups of auxiliary changeover contacts, 4 NO 4 NC contacts, 5 NO 5 NC contacts, H type intelligent controller, optional H type functions, position signal.

NA8G | Air Circuit Breaker (P-066)