Source Tesla Kala changeover systems
 Compact NSX100-630, Compact NS630b-1600, CompactINS/INV, Masterpact

Green Premium, stamping the most eco-friendly products of the industry

\forall

Green Premium"

Product

Green Premium is the only label allowing you to develop effectively an environmental policy and to promote it, while preserving your business efficiency.

It guarantees compliance with the most up-to-date environmental regulations, but it is more than this.

With Green Premium eco-mark, Schneider Electric helps you:

- Calculate the carbon footprint of the solutions you offer
- Ensure full regulation compliance about substances and chemical components
- Deliver all appropriate information to certify eco-design of your solutions
- Easily manage products end of life, while ensuring optimized recycling.

With Green Premium, Schneider Electric commits to be transparent disclosing extensive and reliable information on environmental impacts of its products:

RoHS

Schneider Electric applies RoHS requirements to all its products and worldwide, even for the numerous ones which are not in the scope of the regulation. Compliance certificates are available for all products involved.

REACh

Schneider Electric applies REACh regulation worldwide, and releases all information about presence of Substances of Very High-Concern (SVHC) in its products.

PEP: Product Environmental Profile

For all its products, Schneider Electric publishes the most complete set of environmental data, including carbon footprint and energy consumption for each of the life cycle phases, in compliance with ISO 14025 PEPecopassport program.

EoLI: End of Life Instructions

Available at a click, these documents provide:

- Recyclability rates of the products
- Information to mitigate personnel hazards during dismantling and before recycling operations
- Parts identification either for re-use, or for selective treatment to mitigate environmental hazards, or incompatibility with usual recycling process.
 for applications that need a continuous supply of electric power (hospitals, airports, banks, government facilities, etc.).
But a source-changeover system is also suitable for all LV electrical installations exposed to:
> Nominal voltage loss or dip (when there is high demand for electric power)
> Unpredictable power quality
> Frequent power cuts.
 changeover system gives direct economic benefits: it is possible to select your source based on power cost.
In this case, the replacement source is used as an alternative, more economical source.

Managing energy efficiently
Power Cost
Safety

Where backup supply must be reliable: now that is everywhere.

Electricity is the fuel that feeds economic activity. Very few operations can withstand the financial impact of an electrical stoppage.

For occupant comfort, business continuity, and worker/visitor safety, dependability levels which used to apply to hospitals or airports are now becoming required in shopping malls and offices.

Additionally, utility companies make their contracts more sophisticated to deal with energy concerns: for example,
 by including time restrictions to total accessible power.

For these reasons, backup power sources expand across all types of buildings, and require high performance connection and management.
Enabling you to meet these challenges, Schneider Electric source-changeover system comes as the natural continuation of the world leading low voltage distribution system developed by Schneider Electric.

average loss ratio for data centers without power

Efficient energy

management and

continuity of service with source-changeover system

To ensure continuity of service for critical applications, LV electrical installations need to be connected to at least two independent power sources:

And a replacement

source (R)*
used to supply energy to the installation when the normal source unavailable, or, for instance, when its quality and/or availability is no longer guaranteed.

The source-changeover system switches the load (partly or fully) between these two sources.

A few basics on source-changeover systems

$>$ A source-changeover
system can be
automated to manage
transfers according
to external
conditions. conditions.
> Switching from a main power source to a replacement source can be performed either manually or automatically.
> A source-changeover system comprises circuit breakers, switch-disconnectors or contactors.

3 ways
 to switch the load to meet your needs

Manual source-changeover system
 (or MTSE: Manual Transfer Switching Equipment)

The simplest way to switch the load. It is controlled manually by an operator. The time required to switch from the ' N ' source to ' R ' source can vary.

System

2 or 3 mechanically interlocked manuallyoperated circuit breakers or 2 switchdisconnectors.

Applications

Buildings and infrastructure where the need for continuity of service is significant but not a priority: offices, small and medium-sized businesses.

Remote-operated source-changeover system

(or RTSE: Remote Transfer Switching Equipment)
The most commonly used system for devices with high ratings. No direct human intervention is required. Source-changeover is controlled electrically.

System

2 or 3 circuit breakers that may have different configurations, linked by an electrical interlocking system. In addition, a mechanical interlocking system protects against electrical malfunctions or incorrect manual operations.

Applications

Industry (assembly lines, engine rooms on ships, critical auxiliaries in thermal powerstations, etc.); Infrastructure (port and railway installations, runway lighting systems, control systems on military sites, etc.).

Automatic source-changeover system

(or ATSE: Automatic Transfer Switching Equipment)
An automatic controller may be added to a remote-operated source-changeover system. It is possible to automatically control source transfer according to programmed (dedicated controllers) or
 programmable (PLC) operating modes. These solutions ensure optimum energy management.

System

2 or 3 circuit breakers that may have different configurations, linked by an electrical interlocking system. A mechanical interlocking system protects against electrical malfunctions or incorrect manual operations, with an automatic control system (dedicated controllers or PLC).

Applications

Commercial and service sector (operating rooms in hospitals, safety systems for buildings, computer rooms for banks and insurance companies, lighting and emergency lighting systems in malls, etc.), industry and infrastructure.

Whatever the system, you benefit from our expertise!

Compact INS

From 40 A to 630 A
> RTSE range

Compact NSX
From 100 A to 630 A

Masterpact NT / NW
From 630 A to 6300 A

> ATSE range

[^0]

Our expertise and support come together with the source-changeover system you choose for your LV electrical installation. With Compact INS, Compact NSX and Masterpact NT and NW, we offer a complete range of solutions, designed around key values:

Maximum continuity of service
> Energy availability is ensured whatever the external requirements (e.g. high power demand).
> Maintenance and replacement of the sources (N or R) can be done with no interruption of service.
You can maintain a continuous level of service and customer satisfaction.

Maximum safety

For LV electrical installations where safety and continuity of service are critical for people and/or equipment such as hospitals, airports, banks, malls, etc.

Optimized energy management

> Transfer the load to a replacement source according to external requirements.
> Manage power sources according to power quality and power costs.
> Perform system regulation.
> Switch to an emergency replacement source.
You are no longer dependent on your power
supply (and supplier)!

Simplicity and reliability

> Simple installation on LV switchboard.
$>$ Optimized size of the switchboard.
$>$ System based on pre-tested components.
$>$ Compliance with IEC 60947-6-1.

Ecodial

Ecodial software is dedicated to LV electrical installation calculation in accordance with the IEC60364 international standard or national standards.

This $4^{\text {th }}$ generation, "Ecodial Advance Calculation 4", offers a new ergonomic and new features:

- operating mode that allows easy calculation in case of installation with different type of sources
(parallel transformers, back-up generators...)
- discrimination analysis associating curves checking and discrimination tables
- direct access to protection settings including residual current protections
- easy selection of alternate solutions or manual selection of a product.

schneider-electric.com

This international site allows you to access all the Schneider Electric Solution and Product information via:

- comprehensive descriptions
- range data sheets
- a download area
- product selectors
- ...

You can also access the information dedicated to your business and get in touch with your Schneider Electric country support.

Source-changeover systems
Compact NSX100-630,
Compact NS630b-1600,
Compact INS/INV, Masterpact

General content

Presentation

Functions and characteristics

Electrical diagrams

Catalogue numbers and order form

For maximum continuity of service...

Currents
From 40 to 400 A.

1 normal source
1 replacement source

2 sources with coupler on busbars

2 normal sources
1 replacement source

Generator or permanent source

QN	QR
0	0
1	0
0	1

Typical applications:

- continuous production processes
- operating rooms
- computer rooms...

Typical applications:

- large electrical installations (e.g. airports)
- refrigeration units
- special electricity tariffs
- pumping stations...

Ecodial

Ecodial software is dedicated to LV electrical installation calculation in accordance with the IEC60364 international standard or national standards.

This 4 ${ }^{\text {th }}$ generation, "Ecodial Advance Calculation 4", offers a new ergonomic and new features:

- operating mode that allows easy calculation in case of installation with different type of sources
(parallel transformers, back-up generators...)
- discrimination analysis associating curves checking and discrimination tables
- direct access to protection settings including residual current protections
- easy selection of alternate solutions or manual selection of a product.

Presentation 2
Manual and Automatic Transfer Switch A-2
Switching devices
Class PC A-4
Class CB A-6
Mechanical interlocking A-10
Electrical interlocking
IVE unit A-14
Operating sequences
IVE unit A-15
Overview of source-changeover system A-16
Associated controllers
Controller selection A-17
Controller installation A-18
BA controller A-19
BA controller, Operating sequences A-20
UA controller A-21
UA controller, Operating sequences, Forced operation mode A-22
UA controller, Operating sequences, Special-tariff mode A-23
UA controller, Operating sequences, Test mode and automatic operation A-24
UA/BA controller A-25
Dimensions B-1
Electrical diagrams C-1
Catalogue numbers and order forms D-1

Functions and characteristics

Manual and Automatic
Transfer Switch

Manuel Transfert Switch Equipment

Automatic Transfert Switch Equipment

Manual and Automatic Transfer Switch

Switching devices

	Class PC	Class CB
Compact INS/INV	A-4	-
Compact NSX	A-5	A-6
Compact NS	A-5	A-7
Masterpact NT	A-5	A-7
Masterpact NW	A-5	A-7

Mechanical interlocking

Mechanical interlocks	A-10
Keylocks with captive keys	A-12
Cables or connecting rods	A-13

Electrical interlocking and Automatic controller

Electrical interlocking	
IVE unit + base plate	A-14
IVE unit, Operating sequences	A-15
With automatic controller	A-17
Controller selection	A-18
Controller installation	A-19
BA controller	A-20
BA controller, Operating sequences	A-21
UA controller	A-22
UA controller, Operating sequences, Forced operation mode	A-23
UA controller, Operating sequences, Special-tariff mode	A-24
UA controller, Operating sequences, Test mode and automatic operation	$\mathrm{A}-25$
UA/BA controller, Operating sequences	

Informations

IEC60947-6-1 applies to transfer switching equipment (TSE) to be used in power systems for transferring a load supply between a normal and an alternate source (other power supply or generator).

TSE is classified according to

- the method of controlling the transfer
- manually transfer switching equipment (MTSE)
- automatic transfer switching equipment (ATSE)
- their short circuit capability
- Class PC: TSE that is capable of making and withstanding, but not intended for breaking short-circuit currents.
Switch and switch-disconnectors are the most useful products used.
\square Class CB: TSE that is capable of working, withstanding, it's intended for breaking short-circuit currents and is provided with over-current releases. Circuit breakers (air circuit breaker or moulded-case circuit breaker) are the most useful products used.

Functions
and characteristics

Switching devices

Class PC

Range	Compact INS	Compact INS/INV
Types of devices	INS40 to INS80 INS100 to INS160	INS250 to INS630 INV100 to INV630
Mixing possibilities	All devices, not possible with a complete assembly source-changeover	All devices, not possible with a complete assembly source-changeover
Electrical characteristics		
Current rating	40 to 160 A	100 to 630 A
Insulating voltage Ui (VAC)	750	800
Rated operational voltage		
Positive break indication	\square	\square
Number of poles (N and R devices must have the same number of poles)	3, 4	3, 4
Operating temperature	$-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$	$-25^{\circ} \mathrm{C}$ and $+70^{\circ} \mathrm{C}$
Additional indication and control auxiliaries		
Indication contacts	OF	OF
Voltage releases MX shunt		
MN undervoltage		
Voltage presence indicator	\square	\square
Voltage transformer		
Ammeter module	\square	\square
Insulation monitoring module		
Installation and connection		
Fixed front connected	\square	\square
Fixed rear connected	\square	\square
Withdrawable, plug-in or drawout		
Installation and connection accessories		
Downstream coupling accessory		\square
Bare-cable connectors	\square	\square
Terminal extensions	\square	\square
Terminal shields and inter-phase barriers	\square	\square
Front panel escutcheons		\square
Locking by padlock	\square	\square
[by keylock	\square	\square

Switching devices

Class PC

Range		Compact NSX		Compact NS	Masterpact	
Types of devices		NSX100 to NSX250	NSX400 to NSX630	NS630b to NS1600	NT06 to NT16	NW08 to NW63
Mixing possibilities		all devices NSX100NA to NSX250NA fixed/fixed or plug-in/plug-in	all devices NSX100NA to NSX630NA fixed/fixed or plug-in/plug-in	all devices NS630bNA to NSX1600NA fixed/fixed or plug-in/plug-in	all mixing possibilities (fixed, drawout or fixed + drawout) NA/HA/HF	all mixing possibilities (fixed, drawout or fixed + drawout) NA/HA/HF
Electrical characteristics						
Current rating		15 to 250 A	15 to 630 A	250 to 1600 A	600 to 1600 A	800 to 6300 A
Insulating voltage Ui (V	AC)	750	750	750	1000	1000
Rated operational voltage						
Positive break indication		\square	\square		\square	\square
Number of poles (N and the same number of pol	R devices must have es)	3,4	3,4	3,4	3,4	3,4
Operating temperature		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left(50^{\circ} \mathrm{C} \text { for } 440 \mathrm{~V}-60 \mathrm{H}\right. \end{aligned}$		$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left(50^{\circ} \mathrm{C} \text { for } 440 \mathrm{~V}-\right. \\ & 60 \mathrm{~Hz}) \end{aligned}$	$\begin{aligned} & -25^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ & \left(50^{\circ} \mathrm{C} \text { for } 440 \mathrm{~V}-60 \mathrm{H}\right. \end{aligned}$	
Control characteristics						
Control voltage	AC	$\begin{array}{\|l} 48 \mathrm{~V}-50 \mathrm{~Hz} \\ 110 / 130,220 / 240, \\ 380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{array}$	$\begin{aligned} & 48 \mathrm{~V}-50 \mathrm{~Hz} \\ & \text { 110/130, 220/240, } \\ & 380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{aligned}$		$\begin{aligned} & 48 \text { to } 415 \mathrm{~V}- \\ & 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V}-60 \mathrm{~Hz} \end{aligned}$	
	DC	$24-250 \mathrm{~V}$	$24-250 \mathrm{~V}$	24-250 V	24-250 V	24-250 V
Maximum consumption	AC	500 VA	500 VA	180 VA	180 VA	180 VA
	DC	500 W	500 W	180 W	180 W	180 W
Minimum switching time		800 ms				
Protection and measurement						
Earth-leakage protection	by Vigi module	\square	\square			
	by control unit			\square	\square	\square
	by add-on Vigirex relay	\square	\square	\square	\square	\square
Current measurements				\square	\square	\square
Voltage, frequency, power measurements, etc.					\square	\square
Additional indication and control auxiliaries						
Indication contacts		OF + SD (+ SDV)	$3 \mathrm{OF}+\mathrm{SD}$ (+SDV)	$2 \mathrm{OF}+\mathrm{SD}$	$2 \mathrm{OF}+\mathrm{SD}$	$2 \mathrm{OF}+\mathrm{SD}$
Voltage releases	MX shunt	\square	\square	\square	\square	\square
	MN undervoltage	\square	\square	\square	\square	\square
Voltage presence indicator		\square	\square		\square	\square
Voltage transformer		\square	\square		\square	\square
Ammeter module		\square	\square		\square	\square
Insulation monitoring module		\square	\square		\square	\square
Installation and connection						
Fixed front connected					\square	\square
Fixed rear connected		(long rear connections)	(long rear connections)	- (vertical or horizontal)	- (vertical or horizontal)	(vertical or horizontal)
Withdrawable, plug-in or drawout		- (plug-in on base)	- (plug-in on base)	- (drawout)	- (drawout)	- (drawout)
Installation and connection accessories						
Downstream coupling accessory		\square	\square			
Bare-cable connectors		\square	\square	\square		
Terminal extensions		\square	\square			
Terminal shields and inter-phase barriers			\square	\square		
Front panel escutcheons		\square	\square	\square	\square	\square
Locking	by padlock	\square	\square	\square	\square	\square
	by keylock	\square	\square	\square	\square	\square

Functions and characteristics
 Switching devices
 Class CB

Range		Compact NSX		
Types of devices		NSX100 to NSX250	NSX400 to NSX630	
Mixing possibilities		all devices NSX100 to NSX250 N/H/L fixed/fixed or plug-in/plug-in	all devices NSX100 to NSX630 N/H/L fixed/fixed or plug-in/plug-in	
Electrical characteristics				
Current rating		15 to 250 A	15 to 630 A	
Insulating voltage Ui (VAC)		750	750	
Rated operational voltage				
Positive break indication		\square	\square	
Number of poles (N and R devices must have the same number of poles)		3,4	3, 4	
Operating temperature		$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(50^{\circ} \mathrm{C}\right.$ for $\left.440 \mathrm{~V}-60 \mathrm{~Hz}\right)$		
		Motor mechanism		
Control voltage	AC	$\begin{aligned} & 48 \mathrm{~V}-50 \mathrm{~Hz} \\ & 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{aligned}$	$\begin{aligned} & 48 \mathrm{~V}-50 \mathrm{~Hz} \\ & 110 / 130,220 / 240,380 / 440 \mathrm{~V}-50 / 60 \mathrm{~Hz} \end{aligned}$	
	DC	24-250 V	$24-250 \mathrm{~V}$	
Maximum consumption	AC	500 VA	500 VA	
	DC	500 W	500 W	
Minimum switching time		800 ms	800 ms	
Protection and measurement				
Earth-leakage protection	by Vigi module	\square	\square	
	by control unit			
	by add-on Vigirex relay	\square	\square	
Current measurements				
Voltage, frequency, power measurements, etc.				
Additional indication and control auxiliaries				
Indication contacts		OF + SD (+ SDV)	$3 \mathrm{OF}+\mathrm{SD}$ (+SDV)	
Voltage releases	MX shunt	\square	\square	
	MN undervoltage	\square	\square	
Voltage presence indicator		\square	\square	
Voltage transformer		\square	\square	
Ammeter module		\square	\square	
Insulation monitoring module		\square	-	
Installation and connection				
Fixed front connected				
Fixed rear connected		- (long rear connections)	- (long rear connections)	
Withdrawable, plug-in or drawout		- (plug-in on base)	- (plug-in on base)	
Installation and connection accessories				
Downstream coupling accessory		\square	\square	
Bare-cable connectors		\square	\square	
Terminal extensions		\square	\square	
Terminal shields and inter-phase barriers			\square	
Front panel escutcheons		\square	\square	
Locking	by padlock	\square	\square	
	by keylock	\square	\square	
Compact NSX				
		NSX100-250	NSX400 to NSX630	
Rated current In (A)		100 to 250	400 to 630	
Mechanical durability ($\mathrm{O}_{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{N}$ cycles) ${ }^{(1)}$		20000-40000-50000	15000	
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{R}-\mathrm{O}_{R}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{(1)}$ for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{(2)}$		10000-20000-30000	4000-6000	
Electrical durability at $\ln \left(\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{(1)}$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}^{(2)}$		5000-7500-10000	2000-3000	
(1) Mechanical and electrical durability not applicable to Masterpact H 3 and L versions. (2) Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.				
Note: O_{N} : opening of N source C_{R} : closing of R source O_{R} : opening of R source C_{N} : closing of N source				

Switching devices

Class CB

Switching devices

Note:
On: opening of N source
C_{R} : closing of R source
OR: opening of R source
C_{N} : closing of N source

Switching devices

Compact NSX and Compact NS class PC and CB	NSX100 to 250		NSX400 to NSX630		NS630b to NS1600	
Number of poles	3,4		3,4		3,4	
Rated current In (A)	100 to 250		400 to 630		630 to 1600	
Mechanical durability ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)	20000-40000-50000		15000		8000	
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{R}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}\right.$ cycles $)$ for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{(2)}$	10000-20000-30000		4000-6000		2000	
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}\right.$ cycles $)$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}^{(2)}$	5000-7500-10000		2000-3000		1500	
Masterpact class PC and CB	NT06NT10	NT12- NT16	NW08NW16	NW20	NW25NW40	NW50NW63
Number of poles	3, 4	3,4	3, 4	3, 4	3, 4	3, 4
Rated current In (A)	630 to 1600	1250 to 1600	800 to 1600	2000	2500 to 4000	5000 to 6300
Mechanical durability ${ }^{(1)}$ ($\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{\mathrm{R}}-\mathrm{O}_{\mathrm{R}}-\mathrm{C}_{\mathrm{N}}$ cycles)	8000	8000	10000	10000	10000	5000
Electrical durability at $\ln \left(\mathrm{O}_{N}-\mathrm{C}_{R}-\mathrm{O}_{R}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{(1)}$ for $\leqslant 440 \mathrm{~V}$ and 480 V NEMA ${ }^{(2)}$	6000	$\begin{aligned} & \text { 6000 } \\ & \text { NT16: } 3000 \end{aligned}$	10000	8000	5000	1500
Electrical durability at $\ln \left(\mathrm{O}_{\mathrm{N}}-\mathrm{C}_{R}-\mathrm{O}_{R}-\mathrm{C}_{\mathrm{N}} \text { cycles }\right)^{(1)}$ for $\mathrm{U}=500 \mathrm{~V}$ to $690 \mathrm{~V}^{(2)}$	3000	$\begin{array}{\|l\|} \hline 2000 \\ \text { NT16: } 1000 \end{array}$	10000	6000	2500	1500

(1) Mechanical and electrical durability not applicable to Masterpact H 3 and L versions.
(2) Electrical durability tests carried out with a power factor of 0.8 as per IEC 947-2.

Note:

On: opening of N source
C_{R} : closing of R source
OR: opening of R source
C_{N} : closing of N source

Functions and characteristics

Mechanical interlocking

Range	Compact		Compact
Models	INS40 to INS80 INS100 to INS160	INS250 to INS630 INV250 to INV630	NSX100 to NSX250 NSX400 to NSX630
Currentrating (A)	40 to 160	100 to 630	100 to 630
Type of device	PC type	PC type	PC and CB type
Interlocking by toggles			
9			
Interlocking by rotary handles			
0			
Interlocking by keylocks with captive keys			
9			
Interlocking by a base plate			
里			
Source-changeover			

Mechanical interlocking

(1) Implemented with NS630b to NS1600 electrically-operated devices only.
(2) For source-changeover systems using cables, always respect the installation conditions specified on.
(3) Not compatible with automatic controller for NW4Ob to NW63.

[^1]
Functions and characteristics

Interlocking of two or three toggle-controlled devices.

Interlocking of two devices by rotary handles.

Interlocking with keylocks.

Source-changeover.

Interlocking of two or three toggle-controlled devices

Interlocking system
Two devices can be interlocked using this system. Two identical interlocking systems can be used to interlock three devices installed side by side
Authorised positions:
■ one device closed (ON), the others open (OFF)
■ all devices open (OFF).
The system is locked using one or two padlocks (shackle diameter 5 to 8 mm).
This system can be expanded to more than three devices.
There are two interlocking-system models:
■ one for Compact INS/INV
■ one for Compact NSX100 to NSX250
■ one for Compact NSX400 to NSX630.

Combinations of Normal and Replacement devices

All toggle-controlled fixed or plug-in Compact NSX100 to NSX630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of two devices by rotary handles

Interlocking system
Interlocking involves padlocking the rotary handles on two devices which may be either circuit breakers or switch-disconnectors
Authorised positions:
■ one device closed (ON), the other open (OFF)
■ both devices open (OFF).
The system is locked using up to three padlocks (shackle diameter 5 to 8 mm).
There are two interlocking-system models:

- one for Compact INS/INV

■ one for Compact NSX100 to NSX250
■ one for Compact NSX400 to NSX630.

Combinations of Normal and Replacement devices

All rotary-handle fixed or plug-in Compact NSX100 to NSX630 circuit breakers and switch-disconnectors of the same frame size can be interlocked. The devices must be either all fixed or all plug-in versions.

Interlocking of devices by keylocks (captive keys)
Interlocking using keylocks is very simple and makes it possible to interlock two or more devices that are physically distant or that have very different characteristics, for example medium-voltage and low-voltage devices or a Compact NSX100 to NSX630 switch-disconnector.

Interlocking system

Each device is equipped with an identical keylock and the key is captive on the closed (ON) device. A single key is available for all devices. It is necessary to first open (OFF position) the device with the key before the key can be withdrawwn and used to close another device.
A system of wall-mounted captive key boxes makes a large number of combinations possible between many devices.
Combinations of Normal and Replacement devices
All rotary-handle Compact NSX100 to NSX630 circuit breakers and switch-disconnectors can be interlocked between each other or with any other device equipped with the same type of keylock.

Source-changeover

These assemblies provide an easy way to implement source changeover functions with:
■ a single 3-position rotary handle that controls the two switch-disconnectors (Normal source ON, OFF, Replacement source ON)
■ a smaller size, taking up less room in the switchboard
A complete source changeover assembly can be ordered with a single catalogue number.

Mechanical interlocking

Interlocking of two Masterpact circuit breakers using cable.

[^2]
Interlocking of two devices using connecting rods

The two devices must be mounted one above the other (either 2 fixed or 2 withdrawable/drawout devices).
Combinations are possible between Compact NS630b to NS1600 devices, between Masterpact NT and between Masterpact NW devices.
With connecting rods, it is also possible to associate two different types of breakers or switch-disconnectors:

- compact NS with masterpact NT
- compact NS with masterpact NW
- Masterpact NT with Masterpact NW.

Installation

This function requires:

- an adaptation fixture on the right side of each switch-disconnector

■ a set of connecting rods with no-slip adjustments

- the use of a mechanical operation counter is mandatory.

The adaptation fixtures, connecting rods, circuit breakers and switch-disconnectors are supplied separately, ready for assembly by the customer.
The maximum vertical distance between the fixing planes is 900 mm .

Interlocking of two or three devices using cables

For cable interlocking, the circuit breakers may be mounted one above the other or side-by-side.
The interlocked devices may be fixed or drawout, three-pole or four-pole, and may have different ratings and sizes.
The following associations are possible:

- 2 compact NS630b to NS1600

■ 2 Masterpact NT

- 2 Masterpact NW
- 3 Masterpact NW
- combinations Compact NS with Masterpact NT or Masterpact NW
- combinations Masterpact NT with NW.

Interlocking between two Masterpact NT or NW

This function requires:
■ an adaptation fixture on the right side of each device

- a set of cables without slip adjustments

■ the use of a mechanical operation counter CDM is mandatory.
The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .
Interlocking between three Masterpact NW
This function requires:

- a specific adaptation fixture installed on the right side of each device
- two sets of cables without slip adjustments
- the use of a mechanical operation counter CDM is mandatory.

The maximum distance between the fixing planes (vertical or horizontal) is 1000 mm .

Installation

The adaptation fixtures, sets of cables and circuit breakers or switch-disconnectors are supplied separately, ready for assembly by the customer.

Installation conditions for cable interlocking systems:
■ cable length: 2.5 m

- radius of curvature: 100 mm
- maximum number of curves: 3 .

Only Masterpact NW may be used for three-device combinations.

Interlocking between two devices (Compact NS630b to 1600
or Masterpact NT, NW
This function requires:

- an adaptation fixture on the right side of each device

■ a set of cables with no-slip adjustments.
The maximum distance between the fixing planes (vertical or horizontal) is 2000 mm .

Functions and characteristics

Electrical interlocking

IVE unit

Electrical interlocking is used with a mechanical interlocking system.

Morover, the relays controlling the closing order to the " N " and " R " circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

IVE unit.

A Circuit breaker QS1 equipped with a motor mechanism and auxiliary contacts, connected to the N source
B C Circuit breaker QS2 equipped with a motor mechanism and auxiliary contacts, connected to the R source
C Base plate with mechanical interlocking
D Electrical interlocking unit IVE
E Coupling accessory (downstream connection)

Electrical interlocking is carried out by an electrical control device.
For Compact NSX up to 630 A, electrical interlocking is implemented by the IVE unit integrating control circuits and an external terminal block in accordance with the page C-4 of the chapter "Electric diagrams" of this catalogue.
The integrated control circuits implement the time delays required for correct source transfer.
For Compact NS630b to NS1600 and Masterpact, this function can be implemented in one of two ways:

- using the IVE unit
- by an electrician based on the diagrams in accordance with the pages C-8 to C-13 of the chapter "Electric diagrams" of this catalogue.

Characteristics of the IVE unit

■ External connection terminal block:
\square inputs: circuit breaker control signals

- outputs: status of the SDE contacts on the " N " and " R " source circuit breakers.

■ 2 connectors for the two " N " and " R " source circuit breakers:
\square inputs:

- status of the OF contacts on each circuit breaker (ON or OFF)
- status of the SDE contacts on the " N " and " R " source circuit breakers
\square outputs: power supply for operating mechanisms.
- Control voltage:
- 24 to 250 V DC
- 48 to 415 V $50 / 60 \mathrm{~Hz}-440 \mathrm{~V} 60 \mathrm{~Hz}$.

The IVE unit control voltage must be same as that of the circuit breaker operating mechanisms.

Necessary equipment

For Compact NSX100 to NSX630, each circuit breaker must be equipped with:
■ a motor mechanism

- an OF contact
- an SDE contact.

The components are supplied ready for assembly and the circuit breakers prewired. The prewiring must not be modified.
For Compact NS630b to NS1600, each circuit breaker must be equipped with:

- a motor mechanism
- an available OF contact
- a CE connected-position contact (carriage switch) on withdrawable circuit breakers - an SDE contact.

For Masterpact NT and NW, each circuit breaker must be equipped with:
■ a remote-operation system made up of:
\square MCH gear motor
\square MX or MN opening release
\square XF closing release
\square PF "ready to close" contact

- an available OF contact
- one to three CE connected-position contacts (carriage switches) on drawout circuit breakers (depending on the installation).

Operating sequences

IVEunit

IVE unit

Symbols

QN : "Normal" Compact circuit breaker equipped for remote operation (motor mechanism)
QR : "Replacement" Compact circuit breaker equipped for remote operation (motor mechanism)
ON : Circuit breaker QN opening order
OR : Circuit breaker QR opening order
IN : Circuit breaker QN closing order
IR : Circuit breaker QR closing order
L1 : Faulty "Normal" indication LED
L2 : Faulty "Replacement" indication LED

Dimensions

Overview of source-changeover system

Interlocking on a base plate.

A Short terminal shields
B Terminals
C Interphase barriers
D Long terminal shields

Interlocking of two devices by base plate

Interlocking system

A base plate designed for two Compact NSX devices can be installed horizontally or vertically on a mounting rail. Interlocking is carried out on the base plate by a mechanism located behind the devices. In this way, access to the device controls and trip units is not blocked

Combinations of Normal and Replacement devices
All rotary-handle and toggle-controlled Compact NSX100 to NSX630 circuit breakers and switch-disconnectors can be interlocked. Devices must be either all fixed or all plug-in versions, with or without earth-leakage protection or measurement modules. An adaptation kit is required to interlock:

- two plug-in devices

■ a Compact NSX100 to NSX250 with an NSX400 to NSX630.
Connection to the downstream installation can be made easier using a coupling accessory.

Downstream coupling accessory

This accessory simplifies connection to bars and cables with lugs.
It may be used to couple two switch-disconnectors of the same size.
Pitch between outgoing terminals:
■ Compact INS250 and INV100 to 250: 35 mm
■ Compact INS/INV320 to INS/INV630: 45 mm
■ Compact NSX100 to NSX250: 35 mm
■ Compact NSX400 to NSX630: 45 mm .
For Compact NSX circuit breakers, the downstream coupling accessory can be used only with fixed versions.

Connection and insulation accessories

The coupling accessory can be fitted with the same connection and insulation accessories as the circuit breakers and switch-disconnectors.

Possible uses	Downstream coupling	
	Possible mounting	Outgoing pitch (mm)
Manual source-changeover systems		
INS250 (100 to 250 A) with rotary handle	\square	35
NSX100 to NSX250 with rotary handle	■	35
NSX100 to NSX250 on base plate with toggle control	\square	35
INS400 to INS630 (320 to 630 A) with rotary handle	-	45
NSX400 to NSX630 with rotary handle	■	45
NSX400 to NSX630 on base plate with toggle control	-	45
Complete source-changeover assembly		
INS250 (100 to 250 A)	■	35
INS400 to INS630 (320 to 630 A)	-	45

Associated controllers

 Controller selectionBy combining a remote-operated source-changeover system with an integrated BA or UA automatic controller, it is possible to automatically control source transfer according to user-selected sequences.
These controllers can be used on source-changeover systems comprising 2 circuit breakers.
For source-changeover systems comprising 3 circuit breakers, the automatic control diagram must be prepared by the installer as a complement to to diagrams provided in the "electrical diagrams" section of this catalogue.

BA controller.

UA controller.

(1) For example, 220 V single-phase or 220 V three-phase.
(2) The controller is powered by the ACP control plate. The same voltage must be used for the ACP plate, the IVE unit and the circuit breaker operating mechanisms. If this voltage is the same as the source voltage, then the "Normal" and "Replacement" sources can be used directly for the power supply. If not, an isolation transformer must be used.

Functions and characteristics

Associated controllers

Controller installation

ACP control plate.

ACP control plate

The control plate provides in a single unit:

- protection for the BA or UA controller with two highly limiting P25M circuit breakers
(infinite breaking capacity) for power drawn from the AC source
- control of circuit-breaker ON and OFF functions via two relay contactors
- connection of the circuit breakers to the BA or UA controller via a built-in terminal block.

Control voltages

■ $110 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

- 220 to $240 \mathrm{~V} 50 / 60 \mathrm{~Hz}$.

■ 380 to $415 \mathrm{~V} 50 / 60 \mathrm{~Hz}$ and 440 V 60 Hz .
The same voltage must be used for the ACP control plate, the controller and the circuit breaker operating mechanisms.

Installation

Connection between the ACP control plate and the IVE unit may use:

- wiring done by the installer

■ prefabricated wiring (optional).

Installation of the BA and UA controllers

The BA and UA controllers may be installed in one of two manners:

- directly mounted on the ACP control plate
- mounted on the front panel of the switchboard
- if the length of the connection between the controller and the control plate (ACP) is less than or equal to 1 m , the connecting cable ref. 29368 can be ordered as an optional extra. Cables longer than 1 m , but not longer than 2 m will be the responsibility of the installer.

Mounting on the ACP control plate.

Mounting on the front panel of the switchboard.

BA controller

The BA controller is used to create simple sourcechangeover systems that switch from one source to another depending on the presence of voltage UN on the "Normal" source.
It is generally used to manage two permanent sources and can control Compact NS, Compact NSX and Masterpact NT/NW circuit breakers and switchdisconnectors.

Front of the BA controller.

Operating modes

A four-position switch may be used to select:
■ automatic operation
■ forced operation on the "Normal" source
■ forced operation on the "Replacement" source
■ stop (both "Normal" and "Replacement" sources off)

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds)

Circuit breaker commands and status indications

The status of the circuit breakers is indicated on the front of the controller.

- ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals:

- inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)
■ outputs:
\square indication of operation in automatic or stop mode via changeover contacts.

Test

It is possible to test the operation of the BA controller by turning OFF (opening) the P25M circuit breaker for the "Normal" source and thus simulating a failure of voltage Un.

Functions
and characteristics

Associated controllers
BA controller
Operating sequences

Switch set to Auto (automatic operation and special-tariff mode)

Switch set to the " R " position
(forced operation on the "Replacement" source)

Key
UN : "Normal" source voltage
UR : "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker
(1) The number sends to the indicated step when the condition is true.

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).

UA controller

The UA controller is used to create a source-
changeover system integrating the following automatic functions:

- transfer from one source to another depending on the presence of voltage UN on the "Normal" source \square startup of an engine generator set \square shedding and reconnection of non-priority circuits \square transfer to the "Replacement" source if one of the phases on the "Normal" source fails.
The UA controller can control Compact NS, Compact NSX and Masterpact NT/NW devices.

[^3]
Operating modes

A four-position switch may be used to select:

- automatic operation
- forced operation on the "Normal" source
- forced operation on the "Replacement" source

■ stop (both "Normal" and "Replacement" sources off, then manual operation).

Setting the time delays

Time delays are set on the front of the controller.
t1. delay between detection that the "Normal" source has failed and the transmission of the order to open the "Normal" source circuit breaker (adjustable from 0.1 to 30 seconds).
t2. delay between detection that the "Normal" source has returned and the transmission of the order to open the "Replacement" source circuit breaker (adjustable from 0.1 to 240 seconds).
t3. delay following opening of QN with load shedding and before closing of QR (adjustable from 0.5 to 30 seconds).
t4. delay following opening of QR with load reconnection and before closing of QN (adjustable from 0.5 to 30 seconds).
t5. delay for confirmation that UN is present before shutting down the engine generator set (adjustable from 60 to 600 seconds).
t6. delay before startup of the engine generator set (120 or 180 seconds).

Commands and indications

Circuit breaker status indications on the front of the controller:

- ON, OFF, fault.

A built-in terminal block may be used to connect the following input/output signals:

- inputs:
\square voluntary order to transfer to source R (e.g. for special tariffs, etc.)
\square additional control contact (not part of the controller). Transfer to the "Replacement" source takes place only if the contact is closed (e.g. used to test the frequency of UR, etc.)

- outputs:

\square control of an engine generator set (ON / OFF)
\square shedding of non-priority circuits
\square indication of operation in automatic mode via changeover contacts.

Distribution-system settings

Three switches are used to:
■ select the type of "Normal" source, whether single-phase or three-phase
(e.g. 240 V single-phase or 240 V three-phase)

- select whether to remain (or not) on the "Normal" source if the "Replacement" source is not operational during operation on special tariffs
■ select the maximum permissible startup time for the engine generator set during operation on special tariffs (120 or 180 seconds).

Test

A pushbutton on the front of the controller may be used to test transfer from the "Normal" source to the "Replacement" source, then the return to the "Normal" source. The test lasts approximately three minutes.

COM communications option

Using the internal bus protocol, this option may be used to remote the following information:

- circuit breaker status (ON, OFF, fault trip)
- presence of the "Normal" and "Replacement" voltages

■ presence of an order for forced operation (e.g. special tariffs)

- settings and configuration information
- status of non-priority circuits (loads shed or not)

■ position of the switch (stop, auto, forced operation on the "Normal" source, forced operation on the "Replacement" source).

Functions
and characteristics

Associated controllers

UA controller
Operating sequences
Forced operation mode

Switch set to the "R" position (forced operation on the "Replacement" source)

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energised, the output for generator set startup is activated).

Key

UN : "Normal" source voltage
UR : "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker

Switch set to the "N" position (forced operation on the "Normal" source)

Switch set to the "Stop" position

UA controller
Operating sequences
Special-tariff mode

Switch set to the "Auto" position (special-tariff mode)

WAITING $\begin{aligned} & \text { The system exits this mode when the } \\ & \text { operating mode is modified or when an } \\ & \text { external event occurs (e.g. failure or return } \\ & \text { of UN). }\end{aligned}$
When the UA controller is not energised, the output for generator set startup is activated).

Special-tariff mode 2

Genset startup
Order issued

Key
UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R : "Replacement" source circuit breaker
B : Penalties accepted (N ON), i.e. B=1
(1) The number sends to the indicated step when the condition is true.

Functions
and characteristics

Associated controllers

UA controller
Operating sequences
Test mode and automatic operation

Switch set to the "Auto" position (automatic operation and test mode).

WAITING The system exits this mode when the operating mode is modified or when an external event occurs (e.g. failure or return of UN).
When the UA controller is not energised, the output for generator set startup is activated).

Key
UN: "Normal" source voltage
UR: "Replacement" source voltage
N : "Normal" source circuit breaker
R :"Replacement" source circuit breaker
B : Penalties accepted (N ON), i.e. B=1
(*) The test lasts 180 seconds.
(1) The number sends to the indicated step when the condition is true.

UA/BA controller

BA controller

Inputs
UN : "Normal" source voltage
UR : "Replacement" source voltage
KT : order for forced-operation on R
KR : additional check before transfer

Outputs
QN : "Normal" source circuit breaker
QR : "Replacement" source circuit breaker

UA controller

Inputs
UN : "Normal" source voltage
UR : "Replacement" source voltage
KT : order for forced-operation on R
KR : additional check before transfer

Outputs

KG : order to the genset
SH : load-shedding order
QN : "Normal" source circuit breaker
QR : "Replacement" source circuit breaker

schneider-electric.com

This international site allows you to access all the Schneider Electric Solution and Product information via : - comprehensive descriptions - range data sheets

- a download area
- product selectors
- ...

You can also access the information dedicated to your business and get in touch with your Schneider Electric country support.

Source-changeover systems
Compact NSX100-630,
Compact NS630b-1600,
Compact INS/INV, Masterpact

Dimensions

 Dimensions

 Dimensions}號Presentation 2
Functions and characteristics A-1
Compact INS/INV source-changeover systems B-2
Compact NSX source-changeover systems B-4
Downstream coupling accessory for Compact INS/INV, Compact NSX source-changeover systems B-6
Compact NS source-changeover systems B-7
Masterpact NT/NW source-changeover systems
Interlocking using connecting rods B-8
Compact NSX source-changeover systems Interlocking on a base plate B-9
Compact NS and Masterpact NT source-changeover systems
Interlocking using connecting rods B-13
Masterpact NW source-changeover systems
Interlocking using connecting rods B-14
Compact NS and Masterpact NT/NW source-changeover systems
Interlocking using cables B-15
Compact NS and Masterpact NT source-changeover systems
Interlocking using cables B-16
Masterpact NT/NW source-changeover systems
Interlocking using cables B-17
Masterpact NW source-changeover systems
Interlocking using cables B-18
IVE unit, UA/BA automatic controllers B-20
Electrical diagrams C-1
Catalogue numbers and order forms D-1

Dimensions

Compact INS/INV source-changeover systems

Class PC

Interlocking of direct rotary handles
Compact INS/INV250-100 to 250 A / Compact INS/INV320/400/500/630

Front-panel cutout

Dimensions (mm)

Type	A	B	C	D	F	G	H	K	L	M	N	P
INS/INV250-100 to 250 A	325	90	87.5	175	156	106	17.5	295	75.5	150	75	131
INS/INV320/400/500/630	416	115	100	200	210	130	22.5	386	100	175	74.5	160.4

Note: X and Y are the symmetry planes for a 3-pole device.
Interlocking of extended rotary handles
Compact INS40/63/80/100/125/160 / Compact INS/INV250-100 to 250 A / Compact INS/INV320/400/500/630

Dimensions

Front-panel cutout

Dimensions (mm)

Type	A	B	C	D	F	G $\boldsymbol{m i n}$	G max	H	P	Q
INS40/63/80	325	90	87.5	175	156	155	396	0	25.5	25.5
INS100/125/160	325	90	87.5	175	156	200	441	0	25.5	25.5
INS/INV250-100 to 250A	325	90	87.5	175	156	185	600	17.5	25.5	25.5
INS320/400/500/630	416	115	100	200	210	204	600	22.5	30.8	30.8

Compact INS/INV source-changeover systems

Class PC

Complete source-changeover assembly
Assembly for INS250-100 to 250 A / Assembly for INS320/400/500/630

Dimensions (mm)

| Type | A | B | C | D | E | F | G | H | I | J | K | L | M |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | N

Dimensions of the complete source-changeover assembly with an extended handle

Dimensions (mm)								
Type	A	B	C	E	K	L	M	N
INS250-100 to 250 A	60.4	130.4	295	136	156	138.5	631	50
INS320/400/500/630	82.5	175	395	205	210	162.5	658	75
Dimensions (mm)								
Type	P	Mmax	Mmin	Q				
INS250-100 to 250A	100	567.5	195	64				
INS320/400/500/630	150	593	220.5	64				

Note: lines X and Y indicate the axes of symmetry of the switch-disconnector. Reference plane Z corresponds to the back of the switch-disconnector.

Dimensions
Compact NSX source-changeover systems

Class PC

Dimensions (mm)	A	B	C	D	F	G	H	J	K	L	M	N
NSX100/160/250 NA	325	90	87.5	175	156	133	9.25	9	295	75.5	150	75
NSX400/630 NA	416	115	100	200	210	157	5	24.6	386	100	175	74.5

Interlocking of extended rotary handles
Compact NSX100 NA to NSX630 NA

Front-panel cutout

| Dimensions (mm) | A | B | C | D | F | G $\boldsymbol{\text { min }}$ | G max | H | J | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | (

Compact NSX source-changeover systems

Class PC

Interlocking of toggles
Compact NSX100 NA to NSX630 NA
Dimensions

3 poles

4 poles

Front-panel cutout

3 poles on left

Dimensions (mm)

Type	C2	C3	L	L16	L17	L18	R2	R18	R19	P5	P
NSX100/160/250 NA	54	108	52.5	140	245	280	54	89	140	83	120
NSX400/630 NA	92.5	182	70	185	325	370	71.5	116.5	185	107	150

Dimensions

Class PC

Downstream coupling accessory for Compact INS/INV, Compact NSX source-changeover systems

Downstream coupling accessory
Compact NSX100 NA to NSX630 NA (only for Compact NSX fixed devices)

Dimensions for Compact NSX

Dimensions for Compact INS/INV

Dimensions

Connection

Dimensions (mm)

Type	G2	G3	G28	G29	G30	G52	K1	K2	K3	K4	K8	K9
K16												
NSX100/160/250 NA	118	181.5	244.5	96	152.5	178	35	35	51	156	70	170
NSX400/630 NA	165.9	264.7	337.5	143.5	220.5	264.7	45	45	75	210	113.5	250.7
INS250-100 to 250A	105.5	169	232	83.5	140	165.5	35	35	51	156	57.5	157.5
INS320/400/500/630	141	240.7	313	119	195.6	240	45	45	75	210	88.5	225.7

Dimensions (mm)													
Type	L28	L29	L30	L31	L32	L33	L34	L35	L36	L37	L39	L40	ØT
NSX100/160/250 NA	320	99.5	300	89.5	4.73	130.5	139.5	74.5	19.5	87.5	9.5	140	6
NSX400/630 NA	425	130	400	117.5	5.15	175.3	184.7	98.5	26	115	9.85	184.7	6
INS250-100 to 250 A	320	83	300	72	12.8	130.5	139.5	74.5	21.5	70	8.5	140	6
INS320/400/500/630	425	107.5	400	95	17.35	175.3	184.7	98.5	26	92.5	12.65	184.7	6

Compact NS source-changeover systems

Class PC

Dimensions (mm)

| Type | A | B | C | D | F | G min | G max | H | J | P | Q |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | R

Dimensions

Masterpact NT/NW source-changeover systems Interlocking using connecting rods

Class PC

Two Masterpact NW devices one above the other (NA/HA/HF)

Fixed devices

DB107748.eps

Withdrawable devices

Compact NSX source-changeover systems Interlocking on a base plate

Class PC and CB

Compact NSX100 to NSX250 and Compact NSX100 NA to NSX250 NA
Dimensions, 3 or 4 poles

Fixed device
Withdrawable device

(*) Short terminal shields are mandatory.

Dimensions (mm)														
Type	G50	G51	H20	H21	H22	H23	H42	H43	H44	H45	H46	K25	K35	K36
NSX100/160/250	137.5	285	62.5	97	45.5	73	60	120	144.5	300	37	156	210.5	300
NSX400/630	180	360	100	152	83	123	60	120	189	378	77	210	282.5	400
Dimensions (mm)														
Type	L31	L32	P7	P8	P9	P32	P33	P50	P52	P54	ØT9	ØT10	U	
NSX100/160/250	110.5	354	25	45	75	182	143	25	99.5	21	9	6	$\leqslant 32$	
NSX400/630	150.5	466	25	45	100	256	215	25	123	21	9	6	$\leqslant 32$	

Dimensions

Compact NSX
 source-changeover systems

 Interlocking on a base plate
Class PC and CB

Compact NSX400 to NSX630 and Compact NSX400 NA to NSX630 NA

Fixed device

Note: couping

Dimensions

Vertical mounting

Compact NSX source-changeover systems Interlocking on a base plate

"Normal" and "Replacement" source devices: NSX100 to NSX250

Dimensions

Front-panel cutout
"Normal" and "Replacement" source devices: NSX400 to NSX630

Dimensions

Front-panel cutout

Dimensions
Compact NSX
source-changeover systems

Interlocking on a base plate

Class PC and CB

NSX400 to NSX630 as the "Normal" device, NSX100 to NSX250 as the "Replacement" device

Dimensions

Front-panel cutout

Compact NS and Masterpact NT source-changeover systems

Interlocking using connecting rods

Class CB

Two Compact NS630b to NS1600 devices one above the other

Fixed devices

Withdrawable devices
$\stackrel{0}{\circ}$
$\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{0}{\circ}$
$\stackrel{0}{\circ}$

Two Masterpact NT devices one above the other

Fixed devices

$\ddot{0}$
0
0.0
$\stackrel{0}{0}$
$\stackrel{\circ}{\circ}$
0

Withdrawable devices

Dimensions
Masterpact NW
source-changeover systems
Interlocking using connecting rods

Class CB

Two Masterpact NW devices one above the other

Fixed devices

Withdrawable devices

Compact NS and
 Masterpact NT/NW
 source-changeover systems

Two Compact NS630b to NS1600 devices side-by-side

Fixed devices

Withdrawable devices

Two Masterpact NT devices side-by-side

Fixed devices
Drawout devices

Combination of two Masterpact NT and NW devices side-by-side

Fixed devices

Drawout devices

Dimensions

Compact NS and Masterpact NT source-changeover systems

Interlocking using cables

Class CB

Two Compact NS630b to NS1600 devices one above the other

Fixed devices

Withdrawable devices

Two Masterpact NT devices one above the other
Fixed devices
Drawout devices

Masterpact NT/NW
source-changeover systems
Interlocking using cables

Class CB

Two Masterpact NW devices one above the other

Fixed devices

Drawout devices

Two Masterpact NT and NW devices one above the other
Drawout devices

Dimensions
Masterpact NW
source-changeover systems

Interlocking using cables

Class CB

Two Masterpact NW devices side-by-side

Fixed devices

Three Masterpact NW devices side-by-side
Fixed devices

Drawout devices

Masterpact NW

source-changeover systems

Interlocking using cables

Three Masterpact NW devices one above the other

Fixed devices

Drawout devices

UA/BA automatic controllers

Door cutout for UA/BA controllers

(1) Cutout according DIN 43700 standard.

Source-changeover systems
Compact NSX100-630,
Compact NS630b-1600,
Compact INS/INV, Masterpact

Electrical diagrams

Presentation 2
Functions and characteristics A-1
Dimensions $B-1$
Standard configurations C-2
Remote-operated source-changeover systems
2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices C-4
2 Compact NSX100/630 devices C-5
2 Compact NS630b/1600 devices C-8
2 Masterpact NT or NW devices C-11
Source-changeover systems with automatic controllers UA
2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices C-16
Controller settings C-17
Source-changeover systems with automatic controllers BA
2 Compact NSX100/630, NS630b/1600 or Masterpact NT/NW devices C-18
Remote-operated source-changeover systems
3 Masterpact NW devices C-19
Catalogue numbers and order forms D-1

Standard configurations

[^4]Electrical interlocking by the IVE unit
Independent order to Normal/Replacement source

Controlling each circuit breaker independently.

Simultaneous order to Normal/Replacement source

Control of two circuit breakers by "common" transfer order.
(1) See section "IMPORTANT" here after.
(2) Operating diagram: the SDE "fault-trip" signals are transmitted to the IVE unit. The SDE auxiliary contacts are mounted in the circuit breakers.

IMPORTANT

The relays controlling the closing order to the "Normal" and "Replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.

It is recommended to use Tesys K relays from Schneider Electric reference LC2-K06010•๑. These relays are mechanically and electrically interlocked.

Legends

ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order
CR "Replacement" source closing order
KA1 auxiliary relay
KA2 auxiliary relay
KA3 auxiliary relay
KA4 auxiliary relay
L1 "Normal" source "fault-trip" signal
L2 "Replacement" source "fault-trip" signal
N "Normal" source auxiliary wiring connector
$\boldsymbol{R} \quad$ "Replacement" source auxiliary wiring connector

Note: diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NSX100/630 devices Diagram no. 51201177

Source-changeover system without automatic-control system

Without auxiliaries for emergency off
Db401805.eps

Local reset

Voluntary remote reset

Automatic reset
(1) Prefabricated wiring: cannot be modified.

Legends
QN "Normal" source Compact NSX equipped with motor mechanism
QR "Replacement" source Compact NSX equipped with motor mechanism
SDE "fault-trip" indication contact
IVE electrical interlocking and terminal block unit
MT motormechanism
OF2 breaker ON/OFF indication contact
RN reset order for breaker QN
$R R$ reset order for breaker $Q R$

States permitted by mechanical interlocking system

Normal	Replacement
0	0
1	0
0	1
Note: diagram shown with circuits de-energised, circuit breaker	
open and relays in normal position.	

Source-changeover system without automatic-control system
With emergency off by MN release and automatic reset

(1) Prefabricated wiring supplied.
(2) Independent auxiliary source.

Legends
QN "Normal" source Compact NSX equipped with motormechanism
QR "Replacement" source Compact NSX equipped with motor mechanism
MN undervoltage release
OF2 breaker ON/OFF indication contact
SDE "fault-trip" indication contact
MT motormechanism
IVE electrical interlocking and terminal block unit
BP emergency off button with latching
KA5 auxiliary relay
F1 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system Normal Replacement

Normal	Replacement
0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NSX100/630 devices Diagram no. 51201179

Source-changeover system without automatic-control system
With emergency off by MX release and automatic reset

(1) Prefabricated wiring supplied
(2) This source can be:
\square the source present in the case of voltage monitoring

- an independent source.

In this case, the MX release must be protected
(3) The reset orders must be delayed by 0.3 seconds.

Legends

QN "Normal" source Compact NSX equipped with motor mechanism
QR "Replacement" source Compact NSX equipped with motor mechanism
SDE "fault-trip" indication contact
OF2 breaker ON/OFF indication contact
MX shunt release
MT motormechanism
IVE electrical interlocking and terminal block unit
KA5 time-delayed auxiliary relays
KA6 time-delayed auxiliary relays
F1 auxiliary power supply circuit breaker
F2 auxiliary power supply circuit breaker

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuits de-energised, circuit breakers open and relays in normal position.

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201183

Electrical interlocking by IVE unit

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version. (2) Prefabricated wiring supplied.

Legends
QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS630b to 1600
OF... breaker ON/OFF indication contact
SDE "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes

RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system

Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MT...).

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201184

Electrical interlocking by IVE unit with emergency off by shunt release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version.
(2) Prefabricated wiring supplied.

Legends

QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS630b to 1600
OF... breaker ON/OFF indication contact
SDE "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
MX shunt release
BP emergency off button with latching
KA5 auxiliary relay
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, MX, MT...).

Remote-operated source-changeover systems 2 Compact NS630b/1600 devices Diagram no. 51201185

Electrical interlocking by IVE unit with emergency off by undervoltage release

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired on fixed version.
(2) Prefabricated wiring supplied.

Legends

QN "Normal" source Compact NS630b to 1600
QR "Replacement" source Compact NS630b to 1600
OF... breaker ON/OFF indication contact
SDE "fault-trip" indication contact
CE1 "connected-position" indication contact (carriage switch)
F1 auxiliary power supply circuit breaker
IVE electrical interlocking and terminal block unit
MN undervoltage release
BP emergency off button with latching
KA5 auxiliary relay
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)
MT Motor Mechanism

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: after a fault trip, the breaker must be reset manually by pressing its reset button.
Diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) $=$ supply voltage of electrical auxiliaries (electrical operation, MN, MT...).

Remote-operated source-changeover systems
 2 Masterpact NT or NW devices
 Diagram no. 51201142

Electrical interlocking by IVE unit with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.
(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
F1 auxiliary power supply circuit breaker
ON "Normal" source opening order
OR "Replacement" source opening order
CN "Normal" source closing order (0.25 second delay)
CR "Replacement" source closing order (0.25 second delay)

Wiring colour codes							
RD GN BK VT YE GY WH BN red green black violet yellow grey white brown							

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1
Note: diagram shown with circuit breakers in connected position,	
open, charged, and ready to close.	
Auxiliary power supply = supply voltage of auxiliary relays (KA...)	
= supply voltage of electrical auxiliaries (electrical operation,	
$M C H, M X, X F \ldots$...).	

Remote-operated
 source-changeover systems
 2 Masterpact NT or NW devices
 Diagram no. 51201143

Electrical interlocking by IVE unit with lockout after a fault and emergency off by shunt release

ATTENTION
The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends							
QN	"Normal" source Masterpact NT or NW						
QR	"Replacement" source Masterpact NT or NW						
MCH	spring-charging motor						
MX	standard opening voltage release						
XF	standard closing voltage release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
PF	"ready-to-close" contact						
CE1	"connected-position" indication contact (carriage switch)						
CH	"springs charged" indication contact						
IVE	electrical interlocking and terminal block unit						
KA5	auxiliary relay						
F1	auxiliary power supply circuit breaker						
$B P$	emergency off button with latching						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
CN	"Normal" source closing order (0.25 second delay)						
CR	"Replacement" source closing order (0.25 second delay)						
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

Normal	Replacement
0	0
1	0
0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply $=$ supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F . .$.$) .$

Remote-operated source-changeover systems
 2 Masterpact NT or NW devices Diagram no. 51201144

Electrical interlocking by IVE unit with lockout after a fault and emergency off by undervoltage release

ATTENTION
The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect wire BK to terminal 82.

(1) Not to be wired for the "without lockout after a fault" solution.
(2) Not to be wired on fixed version.
(3) Prefabricated wiring supplied.

Legends

QN	"Normal" source Masterpact NT or NW						
QR	"Replacement" source Masterpact NT or NW						
MCH	spring-charging motor						
MX	standard opening voltage release						
XF	standard closing voltage release						
MN	undervoltage release						
OF...	breaker ON/OFF indication contact						
SDE1	"fault-trip" indication contact						
PF	"ready-to-close" contact						
CE1	"connected-position" indication contact (carriage switch)						
CH	"springs charged" indication contact						
IVE	electrical interlocking and terminal block unit						
KA5	auxiliary relay						
F1	auxiliary power supply circuit breaker						
$B P$	emergency off button with latching						
ON	"Normal" source opening order						
OR	"Replacement" source opening order						
CN	"Normal" source closing order (0.25 second delay)						
CR	"Repla	cement	source	losing or	der (0.	secon	delay)
Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system Normal Replacement

0	0
1	0
0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, M N, X F . .$.$) .$

Remote-operated
 source-changeover systems
 2 Masterpact NT or NW devices
 Diagram no. 51156904

Automatic-control system for permanent replacement source with lockout after a fault (with MN)

(1) Not to be wired for the "without lockout after a fault" solution
(2) Not to be wired on fixed version.

The diagram shows the electrical wiring for circuit breakers.
When wiring the SDE with switch-disconnectors, connect
(3) Prefabricated wiring supplied. wire BK to terminal 82.

IMPORTANT

The relays controlling the closing order to the "Normal" and "Replacement" circuit breakers must be mechanically and/or electrically interlocked to prevent them from giving simultaneous closing commands.
It is recommended to use Tesys K relays from Schneider Electric reference LC2-K06010 \bullet. These relays are mechanically and electrically interlocked.

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
F1 auxiliary power supply circuit breaker
F2 circuit breaker (high breaking capacity)
S1 control switches
KA1 auxiliary relays
KA2 auxiliary relays
KA3 auxiliary relays

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
red	green	black	violet	yellow	grey	white	brown

[^5]
Remote-operated source-changeover systems
 2 Masterpact NT or NW devices
 Diagram no. 51156905

Automatic-control system for replacement source generator set with lockout after a fault (with MN)

Legends

QN "Normal" source Masterpact NT or NW
QR "Replacement" source Masterpact NT or NW
MCH spring-charging motor
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
SDE1 "fault-trip" indication contact
PF "ready-to-close" contact
CE1 "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
IVE electrical interlocking and terminal block unit
F1 auxiliary power supply circuit breaker
F2 circuit breaker (high breaking capacity)
S1 control switches
KA1 auxiliary relay
KA2 time delay for genset startup order to avoid starting the genset for transient UN disturbances
KA3 auxiliary relay

Wiring colour codes							
RD	GN	BK	VT	YE	GY	WH	BN
d	green	black	violet	yellow	grey	white	brown

States permitted by mechanical interlocking system

Normal
Replacement

Normal	Replacement
0	0
1	0
0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M N, X F . .$.$) .$

Source-changeover systems
with automatic controllers UA
2 Compact NSX100/630, NS630b/1600 or
Masterpact NT/NW devices

Load shedding and genset management

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Tests on "Normal" and "Replacement" source voltages
"Normal" source voltage UN test

Ref. UA UA150	$\begin{aligned} & 29472 \\ & 29474 \end{aligned}$	$\begin{aligned} & 29472 \\ & 29474 \end{aligned}$	$\begin{aligned} & 29473 \\ & 29475 \end{aligned}$
	$\begin{gathered} N / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \varphi / \varphi \\ 220 / 240 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} \varphi / \varphi \\ 380 / 415 \mathrm{VAC} \\ 50 / 60 \mathrm{~Hz} \\ 440 \mathrm{~V}-60 \mathrm{~Hz} \end{gathered}$
$\mathrm{A}=0$			
$\mathrm{A}=1$			

"Replacement" source voltage UR test The single-phase check for UR is implemented across terminals 1 and 5 of circuit breaker Q2.

Legends
Q1
circuit breaker supplying and protecting the automaticcontrol circuits for the "Normal" source
Q2 circuit breaker supplying and protecting the automaticcontrol circuits for the "Replacement" source control plate
automatic controller
UA
IVE electrical interlocking and terminal block unit

Source-changeover systems with automatic controllers

Controller settings

Source changeover system with UA controller

Controller settings

Tests on "Normal" source voltage
$A=0$ single-phase test,
$A=1$ three-phase test.
Voluntary transfert (e.g. for energy management)

- action in the event of genset failure
$B=0$ circuit breaker N opens,
$B=1$ circuit breaker N remains closed.
- maximum permissible genset startup time (T6)
$\mathrm{C}=0 \mathrm{~T}=120 \mathrm{~s}$,
$C=1 \quad T=180 \mathrm{~s}$.
After this time has elapsed, the genset is considered to have failed.

Using communication functions

The address of the UA 150 controller is set using the two BBus dials.

Source-changeover system with BA controller

Coupling

Transfer conditions

Terminals 20 and 21:
additional control contact (not part of controller).

Legends

Tests on "Normal" and "Replacement" source voltages
The single-phase check for UN and UR is implemented across terminals 1 and 5 of circuit breakers Q1 and Q2.

Remote-operated source-changeover systems

3 Masterpact NW devices
Diagram no. 51156906

2 normal sources and 1 replacement source: electrical interlocking without lockout after a fault

Legends

QN... "Normal" source Masterpact NW
QR "Replacement" source Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
standard closing voltage release
breaker ON/OFF indication contact
"ready-to-close" contact
"connected-position" indication contact (carriage switch)
"springs charged" indication contact
auxiliary power supply circuit breaker
order for transfer from " R " to " $N 1+N 2$ "
QN1 and QN2 closing time delay $=0.25$ sec. . minimum)
order for transfer from " $\mathrm{N} 1+\mathrm{N} 2$ " to " R "
(QR closing time delay $=0.25 \mathrm{sec}$. minimum)

States permitted by mechanical interlocking system
Normal 1 Normal 2 Replacement

0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F \ldots$..

2 normal sources and 1 replacement source: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84 .

Legends

QN... "Normal" source Masterpact NW
$\begin{array}{ll}\text { QR } & \text { "Replacement" source Masterpact NW } \\ \text { MCH }\end{array}$

MX
XF

States permitted by mechanical interlocking system

Normal 1	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F . .$.$) .$

Remote-operated source-changeover systems
 3 Masterpact NW devices
 Diagram no. 51156908

2 normal sources and 1 replacement source: automatic-control system for generator set without lockout after a fault (with MN)

Legends
QN... "Normal" source Masterpact NW
QR "Replacement" source Masterpact NW
MCH spring-charging motor
XF standard closing voltage release
MN undervoltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relay
KA2 auxiliary relays with 10 to 180 sec. time delay
KA3 auxiliary relays with 0.1 to 30 sec. time delay
KA4 auxiliary relay
KA5 auxiliary relays with 0.25 sec. time delay
KA6 auxiliary relays with 0.25 sec. time delay

States permitted by mechanical interlocking system and with associated automatism

Normal 1	Normal 2	Replacement
0	0	0
1	1	0
0	0	1
1	0	0
0	1	0

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation,
$M C H, M N, X F \ldots$..).

Remote-operated source-changeover systems 3 Masterpact NW devices
 Diagram no. 51156909

2 normal sources and 1 replacement source: automatic-control system for generator set with lockout after a fault (with MN)

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends		
QN...	"Normal" source Masterpact NW	
QR	"Replacement" source Masterpact NW	
MCH	spring-charging motor	
XF	standard closing voltage release	
MN	undervoltage release	
OF...	breaker ON/OFF indication contact	
SDE1	"fault-trip" indication contact	
PF	"ready-to-close" contact	
CE...	"connected-position" indication contact (carriage switch)	
CH	"springs charged" indication contact	
F1	auxiliary power supply circuit breaker	
F2/F3	circuit breaker (high breaking capacity)	
S1	control switches	
S2	source selection switches	
KA1	auxiliary relay	
KA2	auxiliary relays with 10 to 180 sec. time delay	
KA3	auxiliary relays with 0.1 to 30 sec. time delay	
KA4	auxiliary relay	
KA5	auxiliary relays with 0.25 sec. time delay	
KA6	auxiliary relays with 0.25 sec. time delay	
KA7	auxiliary relay	
KA8	auxiliary relay	

States permitted by mechanical interlocking system and with associated automatism
Normal 1 Normal 2 Replacement
0
1

Remote-operated source-changeover systems
 3 Masterpact NW devices
 Diagram no. 51156910

3 sources with only 1 device closed: electrical interlocking without lockout after a fault

Legends

QS... "Source" Masterpact NW

States permitted by mechanical interlocking system

 Source 1 Source 2 Source 3| 0 | 0 | 0 |
| :--- | :--- | :--- |
| 1 | 0 | 0 |
| 0 | 1 | 0 |
| 0 | 0 | 1 |

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F \ldots$...

3 sources with only 1 device closed: electrical interlocking with lockout after a fault

[^6]| Legends | |
| :--- | :--- |
| QS... "Source" Masterpact NW | |
| MCH | spring-charging motor |
| MX | standard opening voltage release |
| XF | standard closing voltage release |
| OF... | breaker ON/OFF indication contact |
| SDE1 | "fault-trip" indication contact |
| PF | "ready-to-close" contact |
| CE... | "connected-position" indication contact (carriage switch) |
| CH | "springs charged" indication contact |
| F1 | auxiliary power supply circuit breaker |
| t1 | order for transfer to "Source 1" |
| (QS1 closing time delay = 0.25 sec. minimum) | |
| t2 | order for transfer to "Source 2" |
| | (QS2 closing time delay $=0.25$ sec. minimum) |
| t3 | order for transfer to "Source 3" |
| | (QS3 closing time delay $=0.25$ sec. minimum) |
| KA1 | auxiliary relays |
| KA2 | auxiliary relays |
| KA3 | auxiliary relays |

States permitted by mechanical interlocking system Source $1 \quad$ Source 2 Source 3

0	0	0
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F \ldots$..).

Remote-operated source-changeover systems
 3 Masterpact NW devices
 Diagram no. 51156912

2 sources and 1 coupling: electrical interlocking without lockout after a fault

Legends

QS... "Source" Masterpact NW
QC "Coupling" Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker coupling order for "Source 1 failure"
(QC closing time delay $=0.25 \mathrm{sec}$. minimum)
t2 coupling order for "Source 2 failure"
(QC closing time delay $=0.25 \mathrm{sec}$. minimum)
coupling order for "Source 1 restored"
(QS1 closing time delay $=0.25 \mathrm{sec}$. minimum)
coupling order for "Source 2 restored "
States permitted by mechanical interlocking system

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...)
= supply voltage of electrical auxiliaries (electrical operation,
MCH, MX, XF...).

2 sources and 1 coupling: electrical interlocking with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

[^7]| States permitted by mechanical interlocking system | | |
| :--- | :--- | :--- |
| Source $\mathbf{1}$ Source 2 Coupling
 0 0 0
 1 1 0
 1 0 1
 0 1 1
 1 0 0
 0 1 0
 0 0 1 | | |

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F \ldots)$.

Remote-operated source-changeover systems
 3 Masterpact NW devices
 Diagram no. 51156914

2 sources and 1 coupling: automatic-control system with lockout after a fault

ATTENTION

The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

Legends

QS... "Source" Masterpact NW
QC "Coupling" Masterpact NW
MCH spring-charging motor
MX standard opening voltage release
XF standard closing voltage release
OF... breaker ON/OFF indication contact
SDE1 "fault trip" indication contact
PF "ready-to-close" contact
CE... "connected-position" indication contact (carriage switch)
CH "springs charged" indication contact
F1 auxiliary power supply circuit breaker
F2/F3 circuit breaker (high breaking capacity)
S1 control switches
S2 source selection switches
KA1 auxiliary relays with 10 to 180 sec. time delay
KA2 auxiliary relays with 0.1 to 30 sec. time delay
KA3 auxiliary relays with 10 to 180 sec . time delay
KA4 auxiliary relays with 0.1 to 30 sec. time delay
KA5 auxiliary relays with 0.25 sec. time delay
KA6 auxiliary relays with 0.25 sec . time delay
KA7 auxiliary relays with 0.25 sec . time delay

Source 1	Source 2	Coupling
0	0	0
1	1	0
1	0	1
0	1	1
1	0	0
0	1	0
0	0	1

Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M X, X F . .$.$) .$

Ecodial

Ecodial software is dedicated to LV electrical installation calculation in accordance with the IEC60364 international standard or national standards.

This 4 ${ }^{\text {th }}$ generation, "Ecodial Advance Calculation 4", offers a new ergonomic and new features:

- operating mode that allows easy calculation in case of installation with different type of sources
(parallel transformers, back-up generators...)
- discrimination analysis associating curves checking and discrimination tables
- direct access to protection settings including residual current protections
- easy selection of alternate solutions or manual selection of a product.

Source-changeover systems Compact NSX100-630,
Compact NS630b-1600, Compact INS/INV, Masterpact

Catalogue numbers and order forms

Presentation 2
Functions and characteristics A-1
Dimensions
$B-1$
Electrical diagrams
C-1

Catalogue numbers

Source-changeover systems for 2 devices

Compact INS40 to INS2500 and INV100 to INV2500D-2
Compact NSX100 to NSX630 D-3
Compact NS630b to NS1600 circuit breakers and switch-disconnectors D-5
Masterpact NT circuit breakers and switch-disconnectors D-7
Source-changeover systems for 2 or $\mathbf{3}$ devices Masterpact NW circuit breakers and switch-disconnectors D-8
Order forms
Source-changeover systems for 2 devices
Compact INS40 to INS630 switch-disconnectors D-10
Compact NSX100 to NSX630 / Circuit breakers and switch-disconnectors D-12
Compact NS630b to NS1600 / Circuit breakers and switch-disconnectors D-14
Masterpact NT or NW / Circuit breakers and switch-disconnectors D-16
Source-changeover systems for 3 devicesMasterpact NW / Circuit breakers and switch-disconnectorsD-18

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact INS4O to INS2500 and INV100 to INV2500

Manual source-changeover systems Compact INS40 to INS630 and INV100 to INV630 Interlocking for rotary handle

Catalogue numbers and order forms

Source-changeover systems for 2 devices
Compact NSX100 to NSX630

Remote controlled source changeover
Plate + IVE unit

(1) The supply voltages UA/BA controller, ACP plate, IVE unit and the remote control must be identical whatever the source changeover type.
(2) See products pages.

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact NSX100 to NSX630 (cont.)

Typical composition of remote controlled source changeover

Catalogue numbers and order forms

Source-changeover systems for 2 devices
Compact NS630b to NS1600 circuit breakers and switch-disconnectors

Interlocking for source-changeover systems
Mechanical interlocking

For 2 devices with extended rotary handles
| 33890

Interlocking using connecting rods for Compact electrically-operated devices

Complete assembly with 2 adaptation fixtures + rods

2 Compact fixed devices	33910

| 2 Compact withdrawable devices | 33913 |
| :--- | :--- | :--- |

Interlocking using cables for Compact electrically-operated devices

Complete assembly with 2 adaptation fixtures + cables

2 Compact withdrawable devices
1 Compact fixed + 1 Compact withdrawable device

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact NS630b to NS1600 circuit breakers and switch-disconnectors (cont.)

Associated controller

The automatic-control option includes:
■ an IVE electrical-interlocking unit
■ an ACP control plate

- a BA or UA controller, depending on the required functions
- a UA/BA adapter kit.

Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.

IVE electrical-interlocking unit		24 to 250 V DC	$\begin{aligned} & 48 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
3	For 2 devices	29356	29352
	Wiring kit for connection of 2 fixed/withdrawable devices to the IVE unit		54655

Control unit option		110/127 V AC 50/60 Hz	220/240 V AC 50/60 Hz	$\begin{aligned} & 380 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
	$\mathrm{ACP}+$ controller $\mathrm{BA}^{(1)}$		29470	29471
	Plate ACP		29363	29364
	Controller BA		29376	29377
	ACP + controller UA ${ }^{(1)}$	29448	29472	29473
	Plate ACP	29447	29363	29364
	Controller UA	29446	29378	29380
	ACP + controller UA150 ${ }^{(1)}$ (communication option)		29474	29475
	Plate ACP		29363	29364
	Controller UA150		29379	29381

(1) The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of sourcechangeover system.

Catalogue numbers and order forms

Source-changeover systems for 2 devices

Masterpact NT circuit breakers and switch-disconnectors

Interlocking for source-changeover systems
Interlocking using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 Masterpact NT fixed devices
33912
2 Masterpact NT drawout devices

Interlocking using cables ${ }^{(*)}$
Choose 2 adaptation fixtures (1 for each breaker +1 set of cables)
1 adaptation fixture for Masterpact NT fixed devices
1 adaptation fixture for Masterpact NT drawout devices
1 set of 2 cables
(*) Can be used with any combination of NT or NW, fixed or drawout devices.
Associated controller
The automatic-control option includes:

- an IVE electrical-interlocking unit
- an ACP control plate
- a BA or UA controller, depending on the required functions

■ a UA/BA adapter kit.

Note: the circuit breaker auxiliaries (MCH, MX, XF) and the automatic-control components (IVE, ACP, UA or BA) must have the same voltages.

IVE electrical-interlocking unit

(1) The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of source-changeover system.

Catalogue numbers and order forms

Source-changeover systems for 2 or 3 devices
 Masterpact NW circuit breakers and switch-disconnectors

Interlocking for source-changeover systems for 2 devices
Interlocking of 2 devices using connecting rods

Complete assembly with 2 adaptation fixtures + rods
2 Masterpact NW fixed devices
48612
2 Masterpact NW drawout devices
48612
Can be used with 1 NW fixed + 1 NW drawout.

Interlocking of 2 devices using cables ${ }^{(*)}$
Choose 2 adaptation fixtures (1 for each breaker +1 set of cables)
1 adaptation fixture for Masterpact NW fixed devices

47926
47926
33209

(*) Can be used with any combination of NT or NW, fixed or drawout devices.
Associated controller for 2 devices
The automatic-control option includes:
■ an IVE electrical-interlocking unit

- an ACP control plate

■ a BA or UA controller, depending on the required functions

- a UA/BA adapter kit.

IVE electrical-interlocking unit	24 to 250 V DC	$\begin{aligned} & 48 / 415 \mathrm{~V} \mathrm{AC} 50 / 60 \mathrm{~Hz} \\ & 440 \mathrm{~V} 60 \mathrm{~Hz} \end{aligned}$
3 For 2 devices	29356	29352
鿒圂 Wiring kit for connection of 2 fixed/drawout devices to the IVE unit		54655

(1) The supply voltages of the UA/BA controller, ACP plate, IVE unit and circuit breaker operating mechanism must be identical whatever the type of sourcechangeover system.

Catalogue numbers and order forms

Source-changeover systems for 2 or 3 devices

Masterpact NW circuit breakers and switch-disconnectors

Interlocking for source-changeover systems for 3 devices
Interlocking of 3 devices using cables
Choose 3 adaptation fixtures (1 complete set with 3 adaptation fixtures + cables)

3 sources, only 1 device closed, fixed or drawout devices	48610

2 sources, 1 coupling, fixed or drawout devices
2 normal, 1 replacement source, fixed or drawout devices

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact INS4O to INS630
 Switch-disconnectors

To indicate your choices, check the applicable square boxes \qquad and enter the appropriate information in the rectangles

Catalogue numbers and order forms

Source-changeover systems for 2 devices
Compact INS4O to INS630
Switch-disconnectors

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact NSX100 to NSX630 / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad \square.

Diagram for two Compact NSX devices

Without automatic control, without emergency off auxiliaries (no.51201177)
Without automatic control, with emergency off by MN
Without automatic control, with emergency off by MX
(no. 51201179)
Mechanical interlocking of two NSX100 to NSX630 devices
(fixed, plug-in or withdrawable)
Manually operated devices, mounted side by side:
Two devices with toggles
Two devices with rotary handles
Mechanical and electrical interlocking of two NSX100 to NSX630 devices (fixed or plug-in)
Electrically operated devices, mounted side by side:
Select 1 base plate + IVE unit, the 4 auxiliary contacts and the options / accessories

Catalogue numbers and order forms

Source-changeover systems for 2 devices
Compact NSX100 to NSX630 / Circuit breakers and switch-disconnectors

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Compact NS630b to NS1600/Circuit breakers andswitch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad .

Diagram for two Compact NS devices

Electrical interlocking with lockout after fault:
Permanent replacement source (with IVE unit)
(no. 51201183)
With emergency off by MX (with IVE unit)
(no. 51201184)
With emergency off by MN (with IVE unit)
(no. 51201185)

Interlocking using connecting rods between two NS630b to NS1600 devices
Manually operated devices installed side-by-side:
For two fixed NS devices with extended rotary handles
Electrically operated devices installed one above the other:
Select a complete set including two adaptation fixtures and the connecting rods

Complete set for:	2 fixed NS devices
2 withdrawable NS devices	

Interlocking using cables between two NS630b to NS1600 devices
Electrically operated devices installed one above the other or side-by-side:
Select a complete set including two adaptation fixtures and the cables

Complete set for:	2 fixed NS devices
2 withdrawable NS devices	
	1 fixed NS device + 1 withdrawable NS device

Electrical interlocking between two NS630b to NS1600 devices
1 IVE unit $48 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}$
1 wiring kit for connection between 2 fixed / withdrawable devices to the IVE unit
Automatic-control option
Power supply $110 \mathrm{~V}-50 / 60 \mathrm{~Hz}$:

ACP + BA controller
ACP + UA controller
ACP + UA150 controller

Power supply $220 / 240 \mathrm{~V}-50 / 60 \mathrm{~Hz}:$	ACP + UA150 controller	
	ACP + BA controller	
	ACP + UA controller	
Power supply $380 / 415 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ and $440 \mathrm{~V}-60 \mathrm{~Hz}:$	ACP + UA150 controller	BA controller
	ACP + UA controller	
	ACP + UA150 controller	

Catalogue numbers and order forms

Source-changeover systems for 2 devices

Compact NS630b to NS1600/Circuit breakers and switch-disconnectors

Catalogue numbers and order forms

Source-changeover systems for 2 devices
 Masterpact NT or NW / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles \qquad
Diagram for 2 Masterpact NT/NW devices
Electrical interlocking with lockout after fault:
Permanent replacement source (with IVE unit)
(no. 51201142)
With emergency off by MX (with IVE unit)
(no. 51201143)
With emergency off by MN (with IVE unit)
(no. 51201144)
Automatic control with lockout after fault:
Permanent replacement source (with IVE unit) (no. 51156904)
Engine generator set (with IVE unit)
Interlocking using connecting rods (NT/NW devices one above the other)
Select a complete set including two adaptation fixtures and the connecting rods

Complete set for:	2 drawout NT devices		
2 drawout NW devices			\square
:---			
2			

1 fixed NT device +1 fixed NW device
1 drawout NT device +1 drawout NW device
Interlocking using cables (NT/NW devices one above the other or side-by-side)
Select two adaptation fixtures (one for each device) and a set of two cables

Catalogue numbers and order forms

Source-changeover systems for 2 devices

Masterpact NT or NW / Circuit breakers and switch-disconnectors

SDE - "fault-trip" indication contact

Chassis locking in "disconnected" position:

Catalogue numbers and order forms

Source-changeover systems for 3 devices
 Masterpact NW / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \qquad and enter the appropriate information in the rectangles \qquad \square.

Diagram for 3 Masterpact NW devices
2 "Normal" sources + 1 "Replacement" source:
Electrical interlocking without lockout after fault
(no. 51156906)
Electrical interlocking with lockout after fault
(no. 51156907)
2 "Normal" sources + 1 "Replacement" source with source selection:
Automatic control w/ engine generator set w/o lockout after fault
(no. 51156908)
Automatic control w/ engine generator set w/ lockout after fault
(no. 51156909)

3 sources, only 1 device ON:

Electrical interlocking without lockout after fault
(no. 51156910)
Electrical interlocking with lockout after fault (no. 51156911)

2 "Normal" sources + 1 coupling:

Electrical interlocking without lockout after fault (no.51156912)
Electrical interlocking with lockout after fault
(no. 51156913)
Automatic control with lockout after fault:
(no. 51156914)
Interlocking using cables (NW devices one above the other or side-by-side)
Select a complete set including three adaptation fixtures and the cables
1 complete set for: $\quad 3$ sources / 1 device ON, fixed or drawout
2 sources + 1 coupling, fixed or drawout
2 sources +1 replacement source, fixed or drawout

Catalogue numbers and order forms

Source-changeover systems for 3 devices

Masterpact NW / Circuit breakers and switch-disconnectors

To indicate your choices, check the applicable square boxes \square and enter the appropriate information in the rectangles

Chassis alone without connections					
Micrologic control unit					
A - ammeter	2.0	5.0	6.0	7.0	
E-energy meter	2.0	5.0	6.0		
P - power meter		5.0	6.0	7.0	
H - harmonic meter		5.0	6.0	7.0	

AD - external power-supply module

for earth-leakage protection
TCW - external sensor for SGR protection

LR - long-time rating plug	Standard 0.4 to 1 Ir
	Low setting 0.4 to 0.8 Ir
	High setting 0.8 to 1 Ir
	LT OFF
PTE - external voltage measurement input (required for	

Indication contacts			
OF - ON/OFF indication contacts			
Standard	4 OF 6 A-240 V AC (10 A-240 V AC and low-level)		
Additional	1 block of 4 OF	max. 2	qty
EF - combined "connected/closed" contacts			
	$1 \mathrm{EF} 6 \mathrm{~A}-240 \mathrm{VAC}$	max. 8	qty
	1 EF low-level	max. 8	qty

SDE - "fault-trip" indication contact

Locking
VBP - ON/OFF pushbutton locking (by transparent cover + padlocks)
OFF position locking:
VCPO - by padlocks
VSPO - by keylocks

Keylock kit (w/o keylock)	Profalux	Ronis Castell
	Kirk	
1 keylock	Profalux	Ronis
2 identical keylocks, 1 key	Profalux	Ronis
2 keylocks, different keys (NW)	Profalux	Ronis

Chassis locking in "disconnected" position:

VSPD - by keylocks	Keylock kit (w/o keylock) 1 keylock 2 identical keylocks, 1 key 2 keylocks, different keys Optional connected/disconn		Ronis Castell Ronis Ronis Ronis ing
VPEC - door interlock		On right-h On left-ha	of chassis of chassis
VPOC - racking interlo			
IPA - cable-type door i			
IBPO - racking interloc	een crank and OFF pushbutto	or NW	
DAE - automatic spring	arge before breaker removal	NW	
VDC - mismatch prote			
Accessories			
CDM - mechanical ope CB - auxiliary terminal CDP - escutcheon CP - transparent cove OP - blanking plate for	counter for chassis cutcheon heon		
Brackets for mounting			backplates
Test kits	Mini test kit		able test kit

Notes

Notes

Notes

Schneider Electric Industries SAS
35, rue Joseph Monier
As standards, specifications and designs change from time to time, please ask for confirmation of the information given in this publication.
92506 Rueil Malmaison Cedex
France
RCS Nanterre 954503439
Capital social $896313776 €$
www.schneider-electric.com

[^0]: UA Controller Compact NSX
 From 100 A to 630 A

[^1]: Note: for other cases, please consult us.

[^2]: Interlocking of two Masterpact circuit breakers using cables.

[^3]: Front of the UA controller.

[^4]: "Lockout after fault" option. This option makes it necessary to manually reset the device following fault tripping

[^5]: States permitted by mechanical interlocking system Normal Replacement

 | 0 | 0 |
 | :--- | :--- |
 | 1 | 0 |
 | 0 | 1 |

 Note: diagram shown with circuit breakers in connected position, open, charged, and ready to close.
 Auxiliary power supply = supply voltage of auxiliary relays (KA...) = supply voltage of electrical auxiliaries (electrical operation, $M C H, M N, X F . .$.$) .$

[^6]: ATTENTION
 The diagram shows the electrical wiring for circuit breakers. When wiring the SDE with switch-disconnectors, connect the SDE to terminals 81 and 84.

[^7]: Legends
 QS... "Source" Masterpact NW
 QC "Coupling" Masterpact NW
 MCH spring-charging motor
 MX standard opening voltage release
 XF standard closing voltage release
 OF... breaker ON/OFF indication contact
 SDE1 "fault-trip" indication contact
 PF "ready-to-close" contact
 CE... "connected-position" indication contact (carriage switch)
 CH "springs charged" indication contact
 F1 auxiliary power supply circuit breaker
 t1 coupling order for "Source 1 failure"
 (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 failure"
 (QC closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 1 restored"
 (QS1 closing time delay $=0.25 \mathrm{sec}$. minimum) coupling order for "Source 2 restored" (QS2 closing time delay $=0.25$ sec. . inimum)
 KA1 auxiliary relays
 KA2 auxiliary relays
 KA3 auxiliary relays

